Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Mar 1;116(5):1197–1209. doi: 10.1083/jcb.116.5.1197

The desmoplakin carboxyl terminus coaligns with and specifically disrupts intermediate filament networks when expressed in cultured cells

PMCID: PMC2289350  PMID: 1740472

Abstract

Specific interactions between desmoplakins I and II (DP I and II) and other desmosomal or cytoskeletal molecules have been difficult to determine in part because of the complexity and insolubility of the desmosome and its constituents. We have used a molecular genetic approach to investigate the role that DP I and II may play in the association of the desmosomal plaque with cytoplasmic intermediate filaments (IF). A series of mammalian expression vectors encoding specific predicted domains of DP I were transiently expressed in cultured cells that form (COS-7) and do not form (NIH-3T3) desmosomes. Sequence encoding a small antigenic peptide was added to the 3' end of each mutant DP cDNA to facilitate immunolocalization of mutant DP protein. Light and electron microscopical observations revealed that DP polypeptides including the 90-kD carboxy-terminal globular domain of DP I specifically colocalized with and ultimately resulted in the complete disruption of IF in both cell lines. This effect was specific for IF as microtubule and microfilament networks were unaltered. This effect was also specific for the carboxyl terminus of DP, as the expression of the 95-kD rod domain of DP I did not visibly alter IF networks. Immunogold localization of COS-7 cells transfected with constructs including the carboxyl terminus of DP demonstrated an accumulation of mutant protein in perinuclear aggregates within which IF subunits were sequestered. These results suggest a role for the DP carboxyl terminus in the attachment of IF to the desmosome in either a direct or indirect manner.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers K., Fuchs E. Expression of mutant keratin cDNAs in epithelial cells reveals possible mechanisms for initiation and assembly of intermediate filaments. J Cell Biol. 1989 Apr;108(4):1477–1493. doi: 10.1083/jcb.108.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Albers K., Fuchs E. The expression of mutant epidermal keratin cDNAs transfected in simple epithelial and squamous cell carcinoma lines. J Cell Biol. 1987 Aug;105(2):791–806. doi: 10.1083/jcb.105.2.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Angst B. D., Nilles L. A., Green K. J. Desmoplakin II expression is not restricted to stratified epithelia. J Cell Sci. 1990 Oct;97(Pt 2):247–257. doi: 10.1242/jcs.97.2.247. [DOI] [PubMed] [Google Scholar]
  4. Arnn J., Staehelin L. A. The structure and function of spot desmosomes. Int J Dermatol. 1981 Jun;20(5):330–339. doi: 10.1111/j.1365-4362.1981.tb00815.x. [DOI] [PubMed] [Google Scholar]
  5. Aubin J. E., Osborn M., Franke W. W., Weber K. Intermediate filaments of the vimentin-type and the cytokeratin-type are distributed differently during mitosis. Exp Cell Res. 1980 Sep;129(1):149–165. doi: 10.1016/0014-4827(80)90340-7. [DOI] [PubMed] [Google Scholar]
  6. Blouin R., Kawahara H., French S. W., Marceau N. Selective accumulation of IF proteins at a focal juxtanuclear site in COS-1 cells transfected with mouse keratin 18 cDNA. Exp Cell Res. 1990 Apr;187(2):234–242. doi: 10.1016/0014-4827(90)90086-p. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. Cartaud A., Ludosky M. A., Courvalin J. C., Cartaud J. A protein antigenically related to nuclear lamin B mediates the association of intermediate filaments with desmosomes. J Cell Biol. 1990 Aug;111(2):581–588. doi: 10.1083/jcb.111.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Conway J. F., Parry D. A. Structural features in the heptad substructure and longer range repeats of two-stranded alpha-fibrous proteins. Int J Biol Macromol. 1990 Oct;12(5):328–334. doi: 10.1016/0141-8130(90)90023-4. [DOI] [PubMed] [Google Scholar]
  10. Cowin P., Kapprell H. P., Franke W. W. The complement of desmosomal plaque proteins in different cell types. J Cell Biol. 1985 Oct;101(4):1442–1454. doi: 10.1083/jcb.101.4.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evan G. I., Lewis G. K., Ramsay G., Bishop J. M. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol Cell Biol. 1985 Dec;5(12):3610–3616. doi: 10.1128/mcb.5.12.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans M. J., Scarpulla R. C. Both upstream and intron sequence elements are required for elevated expression of the rat somatic cytochrome c gene in COS-1 cells. Mol Cell Biol. 1988 Jan;8(1):35–41. doi: 10.1128/mcb.8.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foisner R., Feldman B., Sander L., Wiche G. Monoclonal antibody mapping of structural and functional plectin epitopes. J Cell Biol. 1991 Feb;112(3):397–405. doi: 10.1083/jcb.112.3.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  15. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  16. Green K. J., Parry D. A., Steinert P. M., Virata M. L., Wagner R. M., Angst B. D., Nilles L. A. Structure of the human desmoplakins. Implications for function in the desmosomal plaque. J Biol Chem. 1990 Feb 15;265(5):2603–2612. [PubMed] [Google Scholar]
  17. Green K. J., Stappenbeck T. S., Noguchi S., Oyasu R., Nilles L. A. Desmoplakin expression and distribution in cultured rat bladder epithelial cells of varying tumorigenic potential. Exp Cell Res. 1991 Mar;193(1):134–143. doi: 10.1016/0014-4827(91)90547-8. [DOI] [PubMed] [Google Scholar]
  18. Jones J. C., Goldman R. D. Intermediate filaments and the initiation of desmosome assembly. J Cell Biol. 1985 Aug;101(2):506–517. doi: 10.1083/jcb.101.2.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kapprell H. P., Cowin P., Franke W. W., Ponstingl H., Opferkuch H. J. Biochemical characterization of desmosomal proteins isolated from bovine muzzle epidermis: amino acid and carbohydrate composition. Eur J Cell Biol. 1985 Mar;36(2):217–229. [PubMed] [Google Scholar]
  20. Kapprell H. P., Owaribe K., Franke W. W. Identification of a basic protein of Mr 75,000 as an accessory desmosomal plaque protein in stratified and complex epithelia. J Cell Biol. 1988 May;106(5):1679–1691. doi: 10.1083/jcb.106.5.1679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kelly D. E. Fine structure of desmosomes. , hemidesmosomes, and an adepidermal globular layer in developing newt epidermis. J Cell Biol. 1966 Jan;28(1):51–72. doi: 10.1083/jcb.28.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Klymkowsky M. W., Bachant J. B., Domingo A. Functions of intermediate filaments. Cell Motil Cytoskeleton. 1989;14(3):309–331. doi: 10.1002/cm.970140302. [DOI] [PubMed] [Google Scholar]
  23. Klymkowsky M. W. Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody. Nature. 1981 May 21;291(5812):249–251. doi: 10.1038/291249a0. [DOI] [PubMed] [Google Scholar]
  24. Klymkowsky M. W., Miller R. H., Lane E. B. Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization. J Cell Biol. 1983 Feb;96(2):494–509. doi: 10.1083/jcb.96.2.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell. 1986 Jan 31;44(2):283–292. doi: 10.1016/0092-8674(86)90762-2. [DOI] [PubMed] [Google Scholar]
  26. Kulesh D. A., Ceceña G., Darmon Y. M., Vasseur M., Oshima R. G. Posttranslational regulation of keratins: degradation of mouse and human keratins 18 and 8. Mol Cell Biol. 1989 Apr;9(4):1553–1565. doi: 10.1128/mcb.9.4.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lu X., Lane E. B. Retrovirus-mediated transgenic keratin expression in cultured fibroblasts: specific domain functions in keratin stabilization and filament formation. Cell. 1990 Aug 24;62(4):681–696. doi: 10.1016/0092-8674(90)90114-t. [DOI] [PubMed] [Google Scholar]
  28. Mueller H., Franke W. W. Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque. J Mol Biol. 1983 Feb 5;163(4):647–671. doi: 10.1016/0022-2836(83)90116-x. [DOI] [PubMed] [Google Scholar]
  29. Munro S., Pelham H. R. A C-terminal signal prevents secretion of luminal ER proteins. Cell. 1987 Mar 13;48(5):899–907. doi: 10.1016/0092-8674(87)90086-9. [DOI] [PubMed] [Google Scholar]
  30. O'Keefe E. J., Erickson H. P., Bennett V. Desmoplakin I and desmoplakin II. Purification and characterization. J Biol Chem. 1989 May 15;264(14):8310–8318. [PubMed] [Google Scholar]
  31. Parker B. A., Stark G. R. Regulation of simian virus 40 transcription: sensitive analysis of the RNA species present early in infections by virus or viral DNA. J Virol. 1979 Aug;31(2):360–369. doi: 10.1128/jvi.31.2.360-369.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pasdar M., Krzeminski K. A., Nelson W. J. Regulation of desmosome assembly in MDCK epithelial cells: coordination of membrane core and cytoplasmic plaque domain assembly at the plasma membrane. J Cell Biol. 1991 May;113(3):645–655. doi: 10.1083/jcb.113.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Pasdar M., Nelson W. J. Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. II. Morphological analysis. J Cell Biol. 1988 Mar;106(3):687–695. doi: 10.1083/jcb.106.3.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pirbazari M., Kelly D. E. Analysis of desmosomal intramembrane particle populations and cytoskeletal elements: detergent extraction and freeze-fracture. Cell Tissue Res. 1985;241(2):341–351. doi: 10.1007/BF00217179. [DOI] [PubMed] [Google Scholar]
  35. Rheinwald J. G., O'Connell T. M. Intermediate filament proteins as distinguishing markers of cell type and differentiated state in cultured human urinary tract epithelia. Ann N Y Acad Sci. 1985;455:259–267. doi: 10.1111/j.1749-6632.1985.tb50416.x. [DOI] [PubMed] [Google Scholar]
  36. Schwarz M. A., Owaribe K., Kartenbeck J., Franke W. W. Desmosomes and hemidesmosomes: constitutive molecular components. Annu Rev Cell Biol. 1990;6:461–491. doi: 10.1146/annurev.cb.06.110190.002333. [DOI] [PubMed] [Google Scholar]
  37. Shyy T. T., Asch B. B., Asch H. L. Concurrent collapse of keratin filaments, aggregation of organelles, and inhibition of protein synthesis during the heat shock response in mammary epithelial cells. J Cell Biol. 1989 Mar;108(3):997–1008. doi: 10.1083/jcb.108.3.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  39. Tanaka T., Parry D. A., Klaus-Kovtun V., Steinert P. M., Stanley J. R. Comparison of molecularly cloned bullous pemphigoid antigen to desmoplakin I confirms that they define a new family of cell adhesion junction plaque proteins. J Biol Chem. 1991 Jul 5;266(19):12555–12559. [PubMed] [Google Scholar]
  40. Trevor K. T. Disruption of keratin filaments in embryonic epithelial cell types. New Biol. 1990 Nov;2(11):1004–1014. [PubMed] [Google Scholar]
  41. Tsukita S., Tsukita S. Desmocalmin: a calmodulin-binding high molecular weight protein isolated from desmosomes. J Cell Biol. 1985 Dec;101(6):2070–2080. doi: 10.1083/jcb.101.6.2070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vassar R., Coulombe P. A., Degenstein L., Albers K., Fuchs E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell. 1991 Jan 25;64(2):365–380. doi: 10.1016/0092-8674(91)90645-f. [DOI] [PubMed] [Google Scholar]
  43. Virata M. L., Wagner R. M., Parry D. A., Green K. J. Molecular structure of the human desmoplakin I and II amino terminus. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):544–548. doi: 10.1073/pnas.89.2.544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. White E., Cipriani R. Role of adenovirus E1B proteins in transformation: altered organization of intermediate filaments in transformed cells that express the 19-kilodalton protein. Mol Cell Biol. 1990 Jan;10(1):120–130. doi: 10.1128/mcb.10.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. White E., Cipriani R. Specific disruption of intermediate filaments and the nuclear lamina by the 19-kDa product of the adenovirus E1B oncogene. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9886–9890. doi: 10.1073/pnas.86.24.9886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wiche G., Becker B., Luber K., Weitzer G., Castañon M. J., Hauptmann R., Stratowa C., Stewart M. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil. J Cell Biol. 1991 Jul;114(1):83–99. doi: 10.1083/jcb.114.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES