Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Mar 1;116(5):1111–1121. doi: 10.1083/jcb.116.5.1111

Cortical localization of a calcium release channel in sea urchin eggs

PMCID: PMC2289353  PMID: 1310992

Abstract

We have used an antibody against the ryanodine receptor/calcium release channel of skeletal muscle sarcoplasmic reticulum to localize a calcium release channel in sea urchin eggs. The calcium release channel is present in less than 20% of immature oocytes, where it does not demonstrate a specific cytoplasmic localization, while it is confined to the cortex of all mature eggs examined. This is in contrast to the cortical and subcortical localization of calsequestrin in mature and immature eggs. Immunolocalization of the calcium release channel reveals a cortical reticulum or honeycomb staining network that surrounds cortical granules and is associated with the plasma membrane. The network consists of some immunoreactive electron-dense material coating small vesicles and elongate cisternae of the endoplasmic reticulum. The fluorescent reticular staining pattern is lost when egg cortices are treated with agents known to affect sarcoplasmic reticulum calcium release and induce cortical granule exocytosis (ryanodine, calcium, A-23187, and caffeine). An approximately 380-kD protein of sea urchin egg cortices is identified by immunoblot analysis with the ryanodine receptor antibody. These results demonstrate: (a) the presence of a ryanodine-sensitive calcium release channel that is located within the sea urchin egg cortex; (b) an altered calcium release channel staining pattern as a result of treatments that initiate the cortical granule reaction; and (c) a spatial and functional dichotomy of the ER which may be important in serving different roles in the mobilization of calcium at fertilization.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. Oocyte differentiation in the sea urchin, Arbacia punctulata, with particular reference to the origin of cortical granules and their participation in the cortical reaction. J Cell Biol. 1968 May;37(2):514–539. doi: 10.1083/jcb.37.2.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson K., Lai F. A., Liu Q. Y., Rousseau E., Erickson H. P., Meissner G. Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex. J Biol Chem. 1989 Jan 15;264(2):1329–1335. [PubMed] [Google Scholar]
  3. Berridge M. J., Potter B. V. Inositol trisphosphate analogues induce different oscillatory patterns in Xenopus oocytes. Cell Regul. 1990 Aug;1(9):675–681. doi: 10.1091/mbc.1.9.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Busa W. B., Ferguson J. E., Joseph S. K., Williamson J. R., Nuccitelli R. Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores. J Cell Biol. 1985 Aug;101(2):677–682. doi: 10.1083/jcb.101.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Busa W. B. Involvement of calcium and inositol phosphates in amphibian egg activation. J Reprod Fertil Suppl. 1990;42:155–161. [PubMed] [Google Scholar]
  6. Chandler D. E. Exocytosis in vitro: ultrastructure of the isolated sea urchin egg cortex as seen in platinum replicas. J Ultrastruct Res. 1984 Nov;89(2):198–211. doi: 10.1016/s0022-5320(84)80015-5. [DOI] [PubMed] [Google Scholar]
  7. Charbonneau M., Grey R. D. The onset of activation responsiveness during maturation coincides with the formation of the cortical endoplasmic reticulum in oocytes of Xenopus laevis. Dev Biol. 1984 Mar;102(1):90–97. doi: 10.1016/0012-1606(84)90177-5. [DOI] [PubMed] [Google Scholar]
  8. Chiba K., Kado R. T., Jaffe L. A. Development of calcium release mechanisms during starfish oocyte maturation. Dev Biol. 1990 Aug;140(2):300–306. doi: 10.1016/0012-1606(90)90080-3. [DOI] [PubMed] [Google Scholar]
  9. Clapper D. L., Lee H. C. Inositol trisphosphate induces calcium release from nonmitochondrial stores i sea urchin egg homogenates. J Biol Chem. 1985 Nov 15;260(26):13947–13954. [PubMed] [Google Scholar]
  10. Eisen A., Reynolds G. T. Source and sinks for the calcium released during fertilization of single sea urchin eggs. J Cell Biol. 1985 May;100(5):1522–1527. doi: 10.1083/jcb.100.5.1522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ellisman M. H., Deerinck T. J., Ouyang Y., Beck C. F., Tanksley S. J., Walton P. D., Airey J. A., Sutko J. L. Identification and localization of ryanodine binding proteins in the avian central nervous system. Neuron. 1990 Aug;5(2):135–146. doi: 10.1016/0896-6273(90)90304-x. [DOI] [PubMed] [Google Scholar]
  12. Franzini-Armstrong C. Structure of sarcoplasmic reticulum. Fed Proc. 1980 May 15;39(7):2403–2409. [PubMed] [Google Scholar]
  13. Galione A., Lee H. C., Busa W. B. Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science. 1991 Sep 6;253(5024):1143–1146. doi: 10.1126/science.1909457. [DOI] [PubMed] [Google Scholar]
  14. Gardiner D. M., Grey R. D. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation. J Cell Biol. 1983 Apr;96(4):1159–1163. doi: 10.1083/jcb.96.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hagiwara S., Jaffe L. A. Electrical properties of egg cell membranes. Annu Rev Biophys Bioeng. 1979;8:385–416. doi: 10.1146/annurev.bb.08.060179.002125. [DOI] [PubMed] [Google Scholar]
  16. Henson J. H., Beaulieu S. M., Kaminer B., Begg D. A. Differentiation of a calsequestrin-containing endoplasmic reticulum during sea urchin oogenesis. Dev Biol. 1990 Dec;142(2):255–269. doi: 10.1016/0012-1606(90)90347-l. [DOI] [PubMed] [Google Scholar]
  17. Henson J. H., Begg D. A., Beaulieu S. M., Fishkind D. J., Bonder E. M., Terasaki M., Lebeche D., Kaminer B. A calsequestrin-like protein in the endoplasmic reticulum of the sea urchin: localization and dynamics in the egg and first cell cycle embryo. J Cell Biol. 1989 Jul;109(1):149–161. doi: 10.1083/jcb.109.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Henson J. H., Begg D. A. Filamentous actin organization in the unfertilized sea urchin egg cortex. Dev Biol. 1988 Jun;127(2):338–348. doi: 10.1016/0012-1606(88)90320-x. [DOI] [PubMed] [Google Scholar]
  19. Imagawa T., Smith J. S., Coronado R., Campbell K. P. Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem. 1987 Dec 5;262(34):16636–16643. [PubMed] [Google Scholar]
  20. Jaffe L. F. Sources of calcium in egg activation: a review and hypothesis. Dev Biol. 1983 Oct;99(2):265–276. doi: 10.1016/0012-1606(83)90276-2. [DOI] [PubMed] [Google Scholar]
  21. Kinsey W. H. Purification and properties of the egg plasma membrane. Methods Cell Biol. 1986;27:139–152. doi: 10.1016/s0091-679x(08)60346-5. [DOI] [PubMed] [Google Scholar]
  22. Knudson C. M., Mickelson J. R., Louis C. F., Campbell K. P. Distinct immunopeptide maps of the sarcoplasmic reticulum Ca2+ release channel in malignant hyperthermia. J Biol Chem. 1990 Feb 15;265(5):2421–2424. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Lai F. A., Misra M., Xu L., Smith H. A., Meissner G. The ryanodine receptor-Ca2+ release channel complex of skeletal muscle sarcoplasmic reticulum. Evidence for a cooperatively coupled, negatively charged homotetramer. J Biol Chem. 1989 Oct 5;264(28):16776–16785. [PubMed] [Google Scholar]
  25. Lee H. C. Specific binding of cyclic ADP-ribose to calcium-storing microsomes from sea urchin eggs. J Biol Chem. 1991 Feb 5;266(4):2276–2281. [PubMed] [Google Scholar]
  26. Longo F. J. Insemination of immature sea urchin (Arbacia punctulata) eggs. Dev Biol. 1978 Feb;62(2):271–291. doi: 10.1016/0012-1606(78)90217-8. [DOI] [PubMed] [Google Scholar]
  27. Malgaroli A., Fesce R., Meldolesi J. Spontaneous [Ca2+]i fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca2+ store. J Biol Chem. 1990 Feb 25;265(6):3005–3008. [PubMed] [Google Scholar]
  28. McPherson P. S., Campbell K. P. Solubilization and biochemical characterization of the high affinity [3H]ryanodine receptor from rabbit brain membranes. J Biol Chem. 1990 Oct 25;265(30):18454–18460. [PubMed] [Google Scholar]
  29. McPherson P. S., Kim Y. K., Valdivia H., Knudson C. M., Takekura H., Franzini-Armstrong C., Coronado R., Campbell K. P. The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron. 1991 Jul;7(1):17–25. doi: 10.1016/0896-6273(91)90070-g. [DOI] [PubMed] [Google Scholar]
  30. Nakazawa T., Asami K., Shoger R., Fujiwara A., Yasumasu I. Ca2+ uptake H+ ejection and respiration in sea urchin eggs on fertilization. Exp Cell Res. 1970 Nov;63(1):143–146. doi: 10.1016/0014-4827(70)90342-3. [DOI] [PubMed] [Google Scholar]
  31. Näbauer M., Callewaert G., Cleemann L., Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science. 1989 May 19;244(4906):800–803. doi: 10.1126/science.2543067. [DOI] [PubMed] [Google Scholar]
  32. Oberdorf J. A., Head J. F., Kaminer B. Calcium uptake and release by isolated cortices and microsomes from the unfertilized egg of the sea urchin Strongylocentrotus droebachiensis. J Cell Biol. 1986 Jun;102(6):2205–2210. doi: 10.1083/jcb.102.6.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oberdorf J. A., Lebeche D., Head J. F., Kaminer B. Identification of a calsequestrin-like protein from sea urchin eggs. J Biol Chem. 1988 May 15;263(14):6806–6809. [PubMed] [Google Scholar]
  34. Paul M., Johnston R. N. Uptake of Ca2+ is one of the earliest responses to fertilization of sea urchin eggs. J Exp Zool. 1978 Jan;203(1):143–149. doi: 10.1002/jez.1402030114. [DOI] [PubMed] [Google Scholar]
  35. Payan P., Girard J. P., Sardet C., Whitaker M., Zimmerberg J. Uptake and release of calcium by isolated egg cortices of the sea urchin Paracentrotus lividus. Biol Cell. 1986;58(1):87–90. doi: 10.1111/j.1768-322x.1986.tb00490.x. [DOI] [PubMed] [Google Scholar]
  36. Peres A. InsP3- and Ca2(+)-induced Ca2+ release in single mouse oocytes. FEBS Lett. 1990 Nov 26;275(1-2):213–216. doi: 10.1016/0014-5793(90)81474-3. [DOI] [PubMed] [Google Scholar]
  37. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  38. Rakow T. L., Shen S. S. Multiple stores of calcium are released in the sea urchin egg during fertilization. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9285–9289. doi: 10.1073/pnas.87.23.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rossier M. F., Putney J. W., Jr The identity of the calcium-storing, inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum ... or both? Trends Neurosci. 1991 Jul;14(7):310–314. doi: 10.1016/0166-2236(91)90143-i. [DOI] [PubMed] [Google Scholar]
  40. Sardet C. The ultrastructure of the sea urchin egg cortex isolated before and after fertilization. Dev Biol. 1984 Sep;105(1):196–210. doi: 10.1016/0012-1606(84)90275-6. [DOI] [PubMed] [Google Scholar]
  41. Sharp A. H., Campbell K. P. Characterization of the 1,4-dihydropyridine receptor using subunit-specific polyclonal antibodies. Evidence for a 32,000-Da subunit. J Biol Chem. 1989 Feb 15;264(5):2816–2825. [PubMed] [Google Scholar]
  42. Smith J. S., Imagawa T., Ma J., Fill M., Campbell K. P., Coronado R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol. 1988 Jul;92(1):1–26. doi: 10.1085/jgp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Steinhardt R. A., Alderton J. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature. 1988 Mar 24;332(6162):364–366. doi: 10.1038/332364a0. [DOI] [PubMed] [Google Scholar]
  44. Steinhardt R. A., Epel D. Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A. 1974 May;71(5):1915–1919. doi: 10.1073/pnas.71.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Takeshima H., Nishimura S., Matsumoto T., Ishida H., Kangawa K., Minamino N., Matsuo H., Ueda M., Hanaoka M., Hirose T. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature. 1989 Jun 8;339(6224):439–445. doi: 10.1038/339439a0. [DOI] [PubMed] [Google Scholar]
  47. Terasaki M., Henson J., Begg D., Kaminer B., Sardet C. Characterization of sea urchin egg endoplasmic reticulum in cortical preparations. Dev Biol. 1991 Nov;148(1):398–401. doi: 10.1016/0012-1606(91)90348-7. [DOI] [PubMed] [Google Scholar]
  48. Terasaki M., Jaffe L. A. Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J Cell Biol. 1991 Sep;114(5):929–940. doi: 10.1083/jcb.114.5.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Terasaki M., Sardet C. Demonstration of calcium uptake and release by sea urchin egg cortical endoplasmic reticulum. J Cell Biol. 1991 Nov;115(4):1031–1037. doi: 10.1083/jcb.115.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Thayer S. A., Hirning L. D., Miller R. J. The role of caffeine-sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neurons in vitro. Mol Pharmacol. 1988 Nov;34(5):664–673. [PubMed] [Google Scholar]
  51. Thayer S. A., Perney T. M., Miller R. J. Regulation of calcium homeostasis in sensory neurons by bradykinin. J Neurosci. 1988 Nov;8(11):4089–4097. doi: 10.1523/JNEUROSCI.08-11-04089.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tung A. S. Production of large amounts of antibodies, nonspecific immunoglobulins, and other serum proteins in ascitic fluids of individual mice and guinea pigs. Methods Enzymol. 1983;93:12–23. doi: 10.1016/s0076-6879(83)93032-x. [DOI] [PubMed] [Google Scholar]
  54. Turner P. R., Jaffe L. A., Fein A. Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J Cell Biol. 1986 Jan;102(1):70–76. doi: 10.1083/jcb.102.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Twigg J., Patel R., Whitaker M. Translational control of InsP3-induced chromatin condensation during the early cell cycles of sea urchin embryos. Nature. 1988 Mar 24;332(6162):366–369. doi: 10.1038/332366a0. [DOI] [PubMed] [Google Scholar]
  56. Vacquier V. D. The isolation of intact cortical granules from sea urchin eggs: calcium lons trigger granule discharge. Dev Biol. 1975 Mar;43(1):62–74. doi: 10.1016/0012-1606(75)90131-1. [DOI] [PubMed] [Google Scholar]
  57. Wakui M., Osipchuk Y. V., Petersen O. H. Receptor-activated cytoplasmic Ca2+ spiking mediated by inositol trisphosphate is due to Ca2(+)-induced Ca2+ release. Cell. 1990 Nov 30;63(5):1025–1032. doi: 10.1016/0092-8674(90)90505-9. [DOI] [PubMed] [Google Scholar]
  58. Walton P. D., Airey J. A., Sutko J. L., Beck C. F., Mignery G. A., Südhof T. C., Deerinck T. J., Ellisman M. H. Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. J Cell Biol. 1991 Jun;113(5):1145–1157. doi: 10.1083/jcb.113.5.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Whitaker M. J., Baker P. F. Calcium-dependent exocytosis in an in vitro secretory granule plasma membrane preparation from sea urchin eggs and the effects of some inhibitors of cytoskeletal function. Proc R Soc Lond B Biol Sci. 1983 Jul 22;218(1213):397–413. doi: 10.1098/rspb.1983.0047. [DOI] [PubMed] [Google Scholar]
  60. Whitaker M., Patel R. Calcium and cell cycle control. Development. 1990 Apr;108(4):525–542. doi: 10.1242/dev.108.4.525. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES