Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Mar 1;116(5):1243–1255. doi: 10.1083/jcb.116.5.1243

MyoD, myogenin independent differentiation of primordial myoblasts in mouse somites

PMCID: PMC2289359  PMID: 1310995

Abstract

The accumulation of two myogenic regulatory proteins, MyoD and myogenin, was investigated by double-immunocytochemistry and correlated with myosin heavy chain expression in different classes of myoblasts in culture and during early myogenesis in vivo. During in vitro differentiation of fetal myoblasts, MyoD-positive cells were detected first, followed by the appearance of cells positive for both MyoD and myogenin and finally by the appearance of differentiated myocytes and myotubes expressing myosin heavy chain (MHC). A similar pattern of expression was observed in cultures of embryonic and satellite cells. In contrast, most myogenic cells isolated from newly formed somites, expressed MHC in the absence of detectable levels of myogenin or MyoD. In vivo, the appearance of both myogenin and MyoD proteins was only detected at 10.5 d postcoitum (d.p.c.), when terminally differentiated muscle cells could already be identified in the myotome. Parasagittal sections of the caudal myotomes of 10.5-d-old embryos showed that expression of contractile proteins preceded the expression of myogenin or MyoD and, when coexpressed, MHC and myogenin did not co-localize within all the cells of the myotome. In the limb bud, however, many myogenin (or MyoD) positive/MHC negative cells could be observed in the proximal region at day 11. During further embryonic development the expression of these proteins remained constant in all the muscle anlagens examined, decreasing to a low level during the late fetal period. Western and Northern analysis confirmed that the myogenin protein could only be detected after 10.5 d.p.c. while the corresponding message was clearly present at 9.5 d.p.c., strongly suggesting a posttranscriptional regulation of myogenin during this stage of embryonic development. These data show that the first myogenic cells which appear in the mouse myotome, and can be cultured from it, accumulate muscle structural proteins in their cytoplasm without expressing detectable levels of myogenin protein (although the message is clearly accumulated). Neither MyoD message or protein are detectable in these cells, which may represent a distinct myogenic population whose role in development remains to be established.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babai F., Musevi-Aghdam J., Schurch W., Royal A., Gabbiani G. Coexpression of alpha-sarcomeric actin, alpha-smooth muscle actin and desmin during myogenesis in rat and mouse embryos I. Skeletal muscle. Differentiation. 1990 Aug;44(2):132–142. doi: 10.1111/j.1432-0436.1990.tb00546.x. [DOI] [PubMed] [Google Scholar]
  2. Bader D., Masaki T., Fischman D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol. 1982 Dec;95(3):763–770. doi: 10.1083/jcb.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bate M. The embryonic development of larval muscles in Drosophila. Development. 1990 Nov;110(3):791–804. doi: 10.1242/dev.110.3.791. [DOI] [PubMed] [Google Scholar]
  4. Bober E., Lyons G. E., Braun T., Cossu G., Buckingham M., Arnold H. H. The muscle regulatory gene, Myf-6, has a biphasic pattern of expression during early mouse development. J Cell Biol. 1991 Jun;113(6):1255–1265. doi: 10.1083/jcb.113.6.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Braun T., Bober E., Buschhausen-Denker G., Kohtz S., Grzeschik K. H., Arnold H. H., Kotz S. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. EMBO J. 1989 Dec 1;8(12):3617–3625. doi: 10.1002/j.1460-2075.1989.tb08535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Cossu G., Molinaro M. Cell heterogeneity in the myogenic lineage. Curr Top Dev Biol. 1987;23:185–208. doi: 10.1016/s0070-2153(08)60625-0. [DOI] [PubMed] [Google Scholar]
  8. Cossu G., Molinaro M., Pacifici M. Differential response of satellite cells and embryonic myoblasts to a tumor promoter. Dev Biol. 1983 Aug;98(2):520–524. doi: 10.1016/0012-1606(83)90382-2. [DOI] [PubMed] [Google Scholar]
  9. Cossu G., Ranaldi G., Senni M. I., Molinaro M., Vivarelli E. 'Early' mammalian myoblasts are resistant to phorbol ester-induced block of differentiation. Development. 1988 Jan;102(1):65–69. doi: 10.1242/dev.102.1.65. [DOI] [PubMed] [Google Scholar]
  10. Dollé P., Castrillo J. L., Theill L. E., Deerinck T., Ellisman M., Karin M. Expression of GHF-1 protein in mouse pituitaries correlates both temporally and spatially with the onset of growth hormone gene activity. Cell. 1990 Mar 9;60(5):809–820. doi: 10.1016/0092-8674(90)90095-v. [DOI] [PubMed] [Google Scholar]
  11. Ferrari S., Battini R., Cossu G. Differentiation-dependent expression of apolipoprotein A-I in chicken myogenic cells in culture. Dev Biol. 1990 Aug;140(2):430–436. doi: 10.1016/0012-1606(90)90091-v. [DOI] [PubMed] [Google Scholar]
  12. Fürst D. O., Osborn M., Weber K. Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. J Cell Biol. 1989 Aug;109(2):517–527. doi: 10.1083/jcb.109.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hinterberger T. J., Sassoon D. A., Rhodes S. J., Konieczny S. F. Expression of the muscle regulatory factor MRF4 during somite and skeletal myofiber development. Dev Biol. 1991 Sep;147(1):144–156. doi: 10.1016/s0012-1606(05)80014-4. [DOI] [PubMed] [Google Scholar]
  14. Ho R. K., Ball E. E., Goodman C. S. Muscle pioneers: large mesodermal cells that erect a scaffold for developing muscles and motoneurones in grasshopper embryos. Nature. 1983 Jan 6;301(5895):66–69. doi: 10.1038/301066a0. [DOI] [PubMed] [Google Scholar]
  15. Jacob M., Christ B., Jacob H. J. The migration of myogenic cells from the somites into the leg region of avian embryos. An ultrastructural study. Anat Embryol (Berl) 1979;157(3):291–309. doi: 10.1007/BF00304995. [DOI] [PubMed] [Google Scholar]
  16. Jellies J., Kristan W. B., Jr Embryonic assembly of a complex muscle is directed by a single identified cell in the medicinal leech. J Neurosci. 1988 Sep;8(9):3317–3326. doi: 10.1523/JNEUROSCI.08-09-03317.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jellies J. Muscle assembly in simple systems. Trends Neurosci. 1990 Apr;13(4):126–131. doi: 10.1016/0166-2236(90)90003-s. [DOI] [PubMed] [Google Scholar]
  18. Krenn V., Gorka P., Wachtler F., Christ B., Jacob H. J. On the origin of cells determined to form skeletal muscle in avian embryos. Anat Embryol (Berl) 1988;179(1):49–54. doi: 10.1007/BF00305099. [DOI] [PubMed] [Google Scholar]
  19. Lyons G. E., Ontell M., Cox R., Sassoon D., Buckingham M. The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol. 1990 Oct;111(4):1465–1476. doi: 10.1083/jcb.111.4.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Michelson A. M., Abmayr S. M., Bate M., Arias A. M., Maniatis T. Expression of a MyoD family member prefigures muscle pattern in Drosophila embryos. Genes Dev. 1990 Dec;4(12A):2086–2097. doi: 10.1101/gad.4.12a.2086. [DOI] [PubMed] [Google Scholar]
  21. Olson E. N. MyoD family: a paradigm for development? Genes Dev. 1990 Sep;4(9):1454–1461. doi: 10.1101/gad.4.9.1454. [DOI] [PubMed] [Google Scholar]
  22. Ott M. O., Bober E., Lyons G., Arnold H., Buckingham M. Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. Development. 1991 Apr;111(4):1097–1107. doi: 10.1242/dev.111.4.1097. [DOI] [PubMed] [Google Scholar]
  23. Paris J., Richter J. D. Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes. Mol Cell Biol. 1990 Nov;10(11):5634–5645. doi: 10.1128/mcb.10.11.5634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paterson B. M., Walldorf U., Eldridge J., Dübendorfer A., Frasch M., Gehring W. J. The Drosophila homologue of vertebrate myogenic-determination genes encodes a transiently expressed nuclear protein marking primary myogenic cells. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3782–3786. doi: 10.1073/pnas.88.9.3782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sassoon D., Lyons G., Wright W. E., Lin V., Lassar A., Weintraub H., Buckingham M. Expression of two myogenic regulatory factors myogenin and MyoD1 during mouse embryogenesis. Nature. 1989 Sep 28;341(6240):303–307. doi: 10.1038/341303a0. [DOI] [PubMed] [Google Scholar]
  26. Silver P. A. How proteins enter the nucleus. Cell. 1991 Feb 8;64(3):489–497. doi: 10.1016/0092-8674(91)90233-o. [DOI] [PubMed] [Google Scholar]
  27. Stockdale F. E., Miller J. B. The cellular basis of myosin heavy chain isoform expression during development of avian skeletal muscles. Dev Biol. 1987 Sep;123(1):1–9. doi: 10.1016/0012-1606(87)90420-9. [DOI] [PubMed] [Google Scholar]
  28. Stockdale F. E. Myoblast diversity and the formation of the early limb musculature. Ann N Y Acad Sci. 1990;599:111–118. doi: 10.1111/j.1749-6632.1990.tb42369.x. [DOI] [PubMed] [Google Scholar]
  29. Tapscott S. J., Davis R. L., Thayer M. J., Cheng P. F., Weintraub H., Lassar A. B. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science. 1988 Oct 21;242(4877):405–411. doi: 10.1126/science.3175662. [DOI] [PubMed] [Google Scholar]
  30. Vivarelli E., Brown W. E., Whalen R. G., Cossu G. The expression of slow myosin during mammalian somitogenesis and limb bud differentiation. J Cell Biol. 1988 Dec;107(6 Pt 1):2191–2197. doi: 10.1083/jcb.107.6.2191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vivarelli E., Cossu G. Neural control of early myogenic differentiation in cultures of mouse somites. Dev Biol. 1986 Sep;117(1):319–325. doi: 10.1016/0012-1606(86)90374-x. [DOI] [PubMed] [Google Scholar]
  32. Weintraub H., Davis R., Tapscott S., Thayer M., Krause M., Benezra R., Blackwell T. K., Turner D., Rupp R., Hollenberg S. The myoD gene family: nodal point during specification of the muscle cell lineage. Science. 1991 Feb 15;251(4995):761–766. doi: 10.1126/science.1846704. [DOI] [PubMed] [Google Scholar]
  33. Wright W. E., Binder M., Funk W. Cyclic amplification and selection of targets (CASTing) for the myogenin consensus binding site. Mol Cell Biol. 1991 Aug;11(8):4104–4110. doi: 10.1128/mcb.11.8.4104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wright W. E., Sassoon D. A., Lin V. K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. doi: 10.1016/0092-8674(89)90583-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES