Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Mar 2;116(6):1409–1420. doi: 10.1083/jcb.116.6.1409

Microinjection of biotin-tubulin into anaphase cells induces transient elongation of kinetochore microtubules and reversal of chromosome-to- pole motion

PMCID: PMC2289371  PMID: 1541637

Abstract

During prometaphase and metaphase of mitosis, tubulin subunit incorporation into kinetochore microtubules occurs proximal to the kinetochore, at the plus-ends of kinetochore microtubules. During anaphase, subunit loss from kinetochore fiber microtubules is also thought to occur mainly from microtubule plus-ends, proximal to the kinetochore. Thus, the kinetochore can mediate both subunit addition and loss while maintaining an attachment to kinetochore microtubules. To examine the relationship between chromosome motion and tubulin subunit assembly in anaphase, we have injected anaphase cells with biotin-labeled tubulin subunits. The pattern of biotin-tubulin incorporation was revealed using immunoelectron and confocal fluorescence microscopy of cells fixed after injection; chromosome motion was analyzed using video records of living injected cells. When anaphase cells are examined approximately 30 s after injection with biotin-tubulin, bright "tufts" of fluorescence are detected proximal to the kinetochores. Electron microscopic immunocytochemistry further reveals that these tufts of biotin-tubulin-containing microtubules are continuous with unlabeled kinetochore fiber microtubules. Biotin- tubulin incorporation proximal to the kinetochore in anaphase cells is detected after injection of 3-30 mg/ml biotin-tubulin, but not in cells injected with 0.3 mg/ml biotin-tubulin. At intermediate concentrations of biotin-tubulin (3-5 mg/ml), incorporation at the kinetochore can be detected within 15 s after injection; by approximately 1 min after injection discrete tufts of fluorescence are no longer detected, although some incorporation throughout the kinetochore fiber and into nonkinetochore microtubules is observed. At higher concentrations of injected biotin-tubulin (13 mg/ml), incorporation at the kinetochore is more extensive and occurs for longer periods of time than at intermediate concentrations. Incorporation of biotin-tubulin proximal to the kinetochore can be detected in cells injected during anaphase A, but not during anaphase B. Analysis of video records of microinjection experiments reveals that kinetochore proximal incorporation of biotin- tubulin is accompanied by a transient reversal of chromosome-to-pole motion. Chromosome motion is not altered after injection of 0.3 mg/ml biotin-tubulin or 5 mg/ml BSA. These results demonstrate that kinetochore microtubules in anaphase cells can elongate in response to the elevation of the tubulin concentration and that kinetochores retain the ability to mediate plus-end-dependent assembly of KMTs and plus-end- directed chromosome motion after anaphase onset.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander S. P., Rieder C. L. Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior of chromosomes and quantitative analysis of force production by nascent kinetochore fibers. J Cell Biol. 1991 May;113(4):805–815. doi: 10.1083/jcb.113.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bajer A. S., Cypher C., Molè-Bajer J., Howard H. M. Taxol-induced anaphase reversal: evidence that elongating microtubules can exert a pushing force in living cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6569–6573. doi: 10.1073/pnas.79.21.6569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bajer A. S. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis. J Cell Biol. 1982 Apr;93(1):33–48. doi: 10.1083/jcb.93.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassimeris L. U., Wadsworth P., Salmon E. D. Dynamics of microtubule depolymerization in monocytes. J Cell Biol. 1986 Jun;102(6):2023–2032. doi: 10.1083/jcb.102.6.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coue M., Lombillo V. A., McIntosh J. R. Microtubule depolymerization promotes particle and chromosome movement in vitro. J Cell Biol. 1991 Mar;112(6):1165–1175. doi: 10.1083/jcb.112.6.1165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geuens G., Hill A. M., Levilliers N., Adoutte A., DeBrabander M. Microtubule dynamics investigated by microinjection of Paramecium axonemal tubulin: lack of nucleation but proximal assembly of microtubules at the kinetochore during prometaphase. J Cell Biol. 1989 Mar;108(3):939–953. doi: 10.1083/jcb.108.3.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorbsky G. J., Sammak P. J., Borisy G. G. Microtubule dynamics and chromosome motion visualized in living anaphase cells. J Cell Biol. 1988 Apr;106(4):1185–1192. doi: 10.1083/jcb.106.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hill T. L. Microfilament or microtubule assembly or disassembly against a force. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5613–5617. doi: 10.1073/pnas.78.9.5613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hiller G., Weber K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell. 1978 Aug;14(4):795–804. doi: 10.1016/0092-8674(78)90335-5. [DOI] [PubMed] [Google Scholar]
  11. Huitorel P., Kirschner M. W. The polarity and stability of microtubule capture by the kinetochore. J Cell Biol. 1988 Jan;106(1):151–159. doi: 10.1083/jcb.106.1.151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hyman A. A., Mitchison T. J. Modulation of microtubule stability by kinetochores in vitro. J Cell Biol. 1990 May;110(5):1607–1616. doi: 10.1083/jcb.110.5.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hyman A. A., Mitchison T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature. 1991 May 16;351(6323):206–211. doi: 10.1038/351206a0. [DOI] [PubMed] [Google Scholar]
  14. Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
  15. Koshland D. E., Mitchison T. J., Kirschner M. W. Polewards chromosome movement driven by microtubule depolymerization in vitro. Nature. 1988 Feb 11;331(6156):499–504. doi: 10.1038/331499a0. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Mckenna N. M., Wang Y. L. Culturing cells on the microscope stage. Methods Cell Biol. 1989;29:195–205. doi: 10.1016/s0091-679x(08)60195-8. [DOI] [PubMed] [Google Scholar]
  18. Mitchison T. J., Kirschner M. W. Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J Cell Biol. 1985 Sep;101(3):755–765. doi: 10.1083/jcb.101.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitchison T. J., Kirschner M. W. Properties of the kinetochore in vitro. II. Microtubule capture and ATP-dependent translocation. J Cell Biol. 1985 Sep;101(3):766–777. doi: 10.1083/jcb.101.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mitchison T. J. Microtubule dynamics and kinetochore function in mitosis. Annu Rev Cell Biol. 1988;4:527–549. doi: 10.1146/annurev.cb.04.110188.002523. [DOI] [PubMed] [Google Scholar]
  21. Mitchison T. J. Polewards microtubule flux in the mitotic spindle: evidence from photoactivation of fluorescence. J Cell Biol. 1989 Aug;109(2):637–652. doi: 10.1083/jcb.109.2.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
  23. Nicklas R. B. Measurements of the force produced by the mitotic spindle in anaphase. J Cell Biol. 1983 Aug;97(2):542–548. doi: 10.1083/jcb.97.2.542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pfeffer T. A., Asnes C. F., Wilson L. Properties of tubulin in unfertilized sea urchin eggs. Quantitation and characterization by the colchicine-binding reaction. J Cell Biol. 1976 Jun;69(3):599–607. doi: 10.1083/jcb.69.3.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. ROSE G. G., POMERAT C. M., SHINDLER T. O., TRUNNELL J. B. A cellophane-strip technique for culturing tissue in multipurpose culture chambers. J Biophys Biochem Cytol. 1958 Nov 25;4(6):761–764. doi: 10.1083/jcb.4.6.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rieder C. L., Davison E. A., Jensen L. C., Cassimeris L., Salmon E. D. Oscillatory movements of monooriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle. J Cell Biol. 1986 Aug;103(2):581–591. doi: 10.1083/jcb.103.2.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rieder C. L. Mitosis: towards a molecular understanding of chromosome behavior. Curr Opin Cell Biol. 1991 Feb;3(1):59–66. doi: 10.1016/0955-0674(91)90166-v. [DOI] [PubMed] [Google Scholar]
  28. Saxton W. M., Stemple D. L., Leslie R. J., Salmon E. D., Zavortink M., McIntosh J. R. Tubulin dynamics in cultured mammalian cells. J Cell Biol. 1984 Dec;99(6):2175–2186. doi: 10.1083/jcb.99.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schacterle G. R., Pollack R. L. A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem. 1973 Feb;51(2):654–655. doi: 10.1016/0003-2697(73)90523-x. [DOI] [PubMed] [Google Scholar]
  30. Schulze E., Kirschner M. Microtubule dynamics in interphase cells. J Cell Biol. 1986 Mar;102(3):1020–1031. doi: 10.1083/jcb.102.3.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shelden E., Wadsworth P. Interzonal microtubules are dynamic during spindle elongation. J Cell Sci. 1990 Oct;97(Pt 2):273–281. doi: 10.1242/jcs.97.2.273. [DOI] [PubMed] [Google Scholar]
  32. Wadsworth P., Shelden E., Rupp G., Rieder C. L. Biotin-tubulin incorporates into kinetochore fiber microtubules during early but not late anaphase. J Cell Biol. 1989 Nov;109(5):2257–2265. doi: 10.1083/jcb.109.5.2257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wise D., Cassimeris L., Rieder C. L., Wadsworth P., Salmon E. D. Chromosome fiber dynamics and congression oscillations in metaphase PtK2 cells at 23 degrees C. Cell Motil Cytoskeleton. 1991;18(2):131–142. doi: 10.1002/cm.970180208. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES