Abstract
Flagellar axonemes of sea urchin sperm display high-frequency (approximately 300 Hz) vibration with nanometer-scale amplitudes in the presence of ATP (Kamimura, S., and R. Kamiya. 1989. Nature (Lond.). 340:476-478). The vibration appears to represent normal mechanochemical interaction between dynein and microtubules because the dependence of the frequency on MgATP concentration is similar to that of the axonemal motility, and because it is inhibited by micromolar concentrations of vanadate. In this study a two-dimensional photo-sensor was used to characterize this phenomenon in detail. Several new features were revealed. First, the vibration was found to be due to a back-and-forth movement of the doublet microtubules along the axonemal length. Two beads attached to different parts of the same axoneme vibrated in unison, i.e., synchronized exactly in phase. This suggested that the outer doublet can be regarded as a stiff rod in vibrating axonemes. Second, evidence was obtained that the amplitude of the vibration reflected the number of active dynein arms. Third, under certain conditions, the vibration amplitude took stepwise values of 8 x N + 4 nm (N = 0, 1, 2, 3, or 4), indicating that the amplitude of microtubule sliding was limited by the size of tubulin dimer (8 nm) or monomer (4 nm). To explain this phenomenon, a model is presented based on an assumption that the force production by dynein is turned off when dynein is subjected to tensile force; i.e., dynein is assumed to be equipped with a feedback mechanism necessary for oscillation.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brokaw C. J. Adenosine triphosphate usage by flagella. Science. 1967 Apr 7;156(3771):76–78. doi: 10.1126/science.156.3771.76. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Flagellar oscillation: new vibes from beads. J Cell Sci. 1990 Apr;95(Pt 4):527–530. doi: 10.1242/jcs.95.4.527. [DOI] [PubMed] [Google Scholar]
- Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Properties of flagellar "rigor waves" formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J Cell Biol. 1974 Dec;63(3):970–985. doi: 10.1083/jcb.63.3.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Tang W. J., Gibbons I. R. Organic anions stabilize the reactivated motility of sperm flagella and the latency of dynein 1 ATPase activity. J Cell Biol. 1985 Oct;101(4):1281–1287. doi: 10.1083/jcb.101.4.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R. Cilia and flagella of eukaryotes. J Cell Biol. 1981 Dec;91(3 Pt 2):107s–124s. doi: 10.1083/jcb.91.3.107s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Cosson M. P., Evans J. A., Gibbons B. H., Houck B., Martinson K. H., Sale W. S., Tang W. J. Potent inhibition of dynein adenosinetriphosphatase and of the motility of cilia and sperm flagella by vanadate. Proc Natl Acad Sci U S A. 1978 May;75(5):2220–2224. doi: 10.1073/pnas.75.5.2220. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Evans J. A., Gibbons B. H. Acetate anions stabilize the latency of dynein 1 ATPase and increase the velocity of tubule sliding in reactivated sperm flagella. Prog Clin Biol Res. 1982;80:181–184. doi: 10.1002/cm.970020734. [DOI] [PubMed] [Google Scholar]
- Johnson K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu Rev Biophys Biophys Chem. 1985;14:161–188. doi: 10.1146/annurev.bb.14.060185.001113. [DOI] [PubMed] [Google Scholar]
- Kamimura S., Kamiya R. High-frequency nanometre-scale vibration in 'quiescent' flagellar axonemes. Nature. 1989 Aug 10;340(6233):476–478. doi: 10.1038/340476a0. [DOI] [PubMed] [Google Scholar]
- Kamimura S., Takahashi K. Direct measurement of the force of microtubule sliding in flagella. Nature. 1981 Oct 15;293(5833):566–568. doi: 10.1038/293566a0. [DOI] [PubMed] [Google Scholar]
- Oiwa K., Takahashi K. The force-velocity relationship for microtubule sliding in demembranated sperm flagella of the sea urchin. Cell Struct Funct. 1988 Jun;13(3):193–205. doi: 10.1247/csf.13.193. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Johnson K. A. Presteady state kinetic analysis of vanadate-induced inhibition of the dynein ATPase. J Biol Chem. 1983 Nov 25;258(22):13833–13840. [PubMed] [Google Scholar]
- Shimizu T., Kimura I. Effects of N-ethylmaleimide on dynein adenosinetriphosphatase activity and its recombining ability with outer fibers. J Biochem. 1974 Nov;76(5):1001–1008. [PubMed] [Google Scholar]
- Shimizu T., Marchese-Ragona S. P., Johnson K. A. Activation of the dynein adenosinetriphosphatase by cross-linking to microtubules. Biochemistry. 1989 Aug 22;28(17):7016–7021. doi: 10.1021/bi00443a035. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Kamimura S. Dynamic aspects of microtubule sliding in sperm flagella. J Submicrosc Cytol. 1983 Jan;15(1):1–3. [PubMed] [Google Scholar]
- Takahashi K., Shingyoji C., Kamimura S. Microtubule sliding in reactivated flagella. Symp Soc Exp Biol. 1982;35:159–177. [PubMed] [Google Scholar]
- Vale R. D., Soll D. R., Gibbons I. R. One-dimensional diffusion of microtubules bound to flagellar dynein. Cell. 1989 Dec 1;59(5):915–925. doi: 10.1016/0092-8674(89)90614-4. [DOI] [PubMed] [Google Scholar]
- Yano Y., Miki-Noumura T. Sliding velocity between outer doublet microtubules of sea-urchin sperm axonemes. J Cell Sci. 1980 Aug;44:169–186. doi: 10.1242/jcs.44.1.169. [DOI] [PubMed] [Google Scholar]
