Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Mar 2;116(6):1455–1464. doi: 10.1083/jcb.116.6.1455

GAP-43 is expressed by nonmyelin-forming Schwann cells of the peripheral nervous system

PMCID: PMC2289380  PMID: 1531832

Abstract

Recently it has been demonstrated that the growth-associated protein GAP-43 is not confined to neurons but is also expressed by certain central nervous system glial cells in tissue culture and in vivo. This study has extended these observations to the major class of glial cells in the peripheral nervous system, Schwann cells. Using immunohistochemical techniques, we show that GAP-43 immunoreactivity is present in Schwann cell precursors and in mature non-myelin-forming Schwann cells both in vitro and in vivo. This immunoreactivity is shown by Western blotting to be a membrane-associated protein that comigrates with purified central nervous system GAP-43. Furthermore, metabolic labeling experiments demonstrate definitively that Schwann cells in culture can synthesize GAP-43. Mature myelin-forming Schwann cells do not express GAP-43 but when Schwann cells are removed from axonal contact in vivo by nerve transection GAP-43 expression is upregulated in nearly all Schwann cells of the distal stump by 4 wk after denervation. In contrast, in cultured Schwann cells GAP-43 is not rapidly upregulated in cells that have been making myelin in vivo. Thus the regulation of GAP-43 appears to be complex and different from that of other proteins associated with nonmyelin-forming Schwann cells such as N-CAM, glial fibrillary acidic protein, A5E3, and nerve growth factor receptor, which are rapidly upregulated in myelin-forming cells after loss of axonal contact. These observations suggest that GAP-43 may play a more general role in the nervous system than previously supposed.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Bray G. M., Terry L. C., Sweezey E. Three dimensional analysis of unmyelinated fibers in normal and pathologic autonomic nerves. J Neuropathol Exp Neurol. 1976 Mar;35(2):136–151. doi: 10.1097/00005072-197603000-00002. [DOI] [PubMed] [Google Scholar]
  2. Aguayo A. J., Epps J., Charron L., Bray G. M. Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res. 1976 Mar 5;104(1):1–20. doi: 10.1016/0006-8993(76)90643-0. [DOI] [PubMed] [Google Scholar]
  3. Anderton B. H., Breinburg D., Downes M. J., Green P. J., Tomlinson B. E., Ulrich J., Wood J. N., Kahn J. Monoclonal antibodies show that neurofibrillary tangles and neurofilaments share antigenic determinants. Nature. 1982 Jul 1;298(5869):84–86. doi: 10.1038/298084a0. [DOI] [PubMed] [Google Scholar]
  4. Andreasen T. J., Luetje C. W., Heideman W., Storm D. R. Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes. Biochemistry. 1983 Sep 27;22(20):4615–4618. doi: 10.1021/bi00289a001. [DOI] [PubMed] [Google Scholar]
  5. Balch W. E., Dunphy W. G., Braell W. A., Rothman J. E. Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell. 1984 Dec;39(2 Pt 1):405–416. doi: 10.1016/0092-8674(84)90019-9. [DOI] [PubMed] [Google Scholar]
  6. Brockes J. P., Fields K. L., Raff M. C. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979 Apr 6;165(1):105–118. doi: 10.1016/0006-8993(79)90048-9. [DOI] [PubMed] [Google Scholar]
  7. Bunge M. B., Bunge R. P., Peterson E. R., Murray M. R. A light and electron microscope study of long-term organized cultures of rat dorsal root ganglia. J Cell Biol. 1967 Feb;32(2):439–466. doi: 10.1083/jcb.32.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chan S. Y., Murakami K., Routtenberg A. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity. J Neurosci. 1986 Dec;6(12):3618–3627. doi: 10.1523/JNEUROSCI.06-12-03618.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Curtis R., Hardy R., Reynolds R., Spruce B. A., Wilkin G. P. Down-regulation of GAP-43 During Oligodendrocyte Development and Lack of Expression by Astrocytes In Vivo: Implications for Macroglial Differentiation. Eur J Neurosci. 1991;3(9):876–886. doi: 10.1111/j.1460-9568.1991.tb00099.x. [DOI] [PubMed] [Google Scholar]
  10. Deloulme J. C., Janet T., Au D., Storm D. R., Sensenbrenner M., Baudier J. Neuromodulin (GAP43): a neuronal protein kinase C substrate is also present in 0-2A glial cell lineage. Characterization of neuromodulin in secondary cultures of oligodendrocytes and comparison with the neuronal antigen. J Cell Biol. 1990 Oct;111(4):1559–1569. doi: 10.1083/jcb.111.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fitzgerald M., Reynolds M. L., Benowitz L. I. GAP-43 expression in the developing rat lumbar spinal cord. Neuroscience. 1991;41(1):187–199. doi: 10.1016/0306-4522(91)90209-7. [DOI] [PubMed] [Google Scholar]
  12. Gorgels T. G., Van Lookeren Campagne M., Oestreicher A. B., Gribnau A. A., Gispen W. H. B-50/GAP43 is localized at the cytoplasmic side of the plasma membrane in developing and adult rat pyramidal tract. J Neurosci. 1989 Nov;9(11):3861–3869. doi: 10.1523/JNEUROSCI.09-11-03861.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Goslin K., Schreyer D. J., Skene J. H., Banker G. Development of neuronal polarity: GAP-43 distinguishes axonal from dendritic growth cones. Nature. 1988 Dec 15;336(6200):672–674. doi: 10.1038/336672a0. [DOI] [PubMed] [Google Scholar]
  14. Greenberg M. M., Leitao C., Trogadis J., Stevens J. K. Irregular geometries in normal unmyelinated axons: a 3D serial EM analysis. J Neurocytol. 1990 Dec;19(6):978–988. doi: 10.1007/BF01186825. [DOI] [PubMed] [Google Scholar]
  15. Jacobson R. D., Virág I., Skene J. H. A protein associated with axon growth, GAP-43, is widely distributed and developmentally regulated in rat CNS. J Neurosci. 1986 Jun;6(6):1843–1855. doi: 10.1523/JNEUROSCI.06-06-01843.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jessen K. R., Mirsky R., Morgan L. Myelinated, but not unmyelinated axons, reversibly down-regulate N-CAM in Schwann cells. J Neurocytol. 1987 Oct;16(5):681–688. doi: 10.1007/BF01637659. [DOI] [PubMed] [Google Scholar]
  17. Jessen K. R., Mirsky R. Nonmyelin-forming Schwann cells coexpress surface proteins and intermediate filaments not found in myelin-forming cells: a study of Ran-2, A5E3 antigen and glial fibrillary acidic protein. J Neurocytol. 1984 Dec;13(6):923–934. doi: 10.1007/BF01148594. [DOI] [PubMed] [Google Scholar]
  18. Jessen K. R., Mirsky R. Schwann cell precursors and their development. Glia. 1991;4(2):185–194. doi: 10.1002/glia.440040210. [DOI] [PubMed] [Google Scholar]
  19. Jessen K. R., Morgan L., Stewart H. J., Mirsky R. Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development. 1990 May;109(1):91–103. doi: 10.1242/dev.109.1.91. [DOI] [PubMed] [Google Scholar]
  20. Livingston R. B., Pfenniger K., Moor H., Akert K. Specialized paranodal and interparanodal glial-axonal junctions in the peripheral and central nervous system: a freeze-etching study. Brain Res. 1973 Aug 17;58(1):1–24. doi: 10.1016/0006-8993(73)90820-2. [DOI] [PubMed] [Google Scholar]
  21. Meiri K. F., Gordon-Weeks P. R. GAP-43 in growth cones is associated with areas of membrane that are tightly bound to substrate and is a component of a membrane skeleton subcellular fraction. J Neurosci. 1990 Jan;10(1):256–266. doi: 10.1523/JNEUROSCI.10-01-00256.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meiri K. F., Pfenninger K. H., Willard M. B. Growth-associated protein, GAP-43, a polypeptide that is induced when neurons extend axons, is a component of growth cones and corresponds to pp46, a major polypeptide of a subcellular fraction enriched in growth cones. Proc Natl Acad Sci U S A. 1986 May;83(10):3537–3541. doi: 10.1073/pnas.83.10.3537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Meiri K. F., Willard M., Johnson M. I. Distribution and phosphorylation of the growth-associated protein GAP-43 in regenerating sympathetic neurons in culture. J Neurosci. 1988 Jul;8(7):2571–2581. doi: 10.1523/JNEUROSCI.08-07-02571.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Moss D. J., Fernyhough P., Chapman K., Baizer L., Bray D., Allsopp T. Chicken growth-associated protein GAP-43 is tightly bound to the actin-rich neuronal membrane skeleton. J Neurochem. 1990 Mar;54(3):729–736. doi: 10.1111/j.1471-4159.1990.tb02312.x. [DOI] [PubMed] [Google Scholar]
  25. Mugnaini E., Schnapp B. Possible role of zonula occludens of the myelin sheath in demyelinating conditions. Nature. 1974 Oct 25;251(5477):725–727. doi: 10.1038/251725a0. [DOI] [PubMed] [Google Scholar]
  26. Raible D. W., McMorris F. A. Cyclic AMP regulates the rate of differentiation of oligodendrocytes without changing the lineage commitment of their progenitors. Dev Biol. 1989 Jun;133(2):437–446. doi: 10.1016/0012-1606(89)90047-x. [DOI] [PubMed] [Google Scholar]
  27. Shinowara N. L., Beutel W. B., Revel J. P. Comparative analysis of junctions in the myelin sheath of central and peripheral axons of fish, amphibians and mammals: a freeze-fracture study using complementary replicas. J Neurocytol. 1980 Feb;9(1):15–38. doi: 10.1007/BF01205225. [DOI] [PubMed] [Google Scholar]
  28. Skene J. H. Axonal growth-associated proteins. Annu Rev Neurosci. 1989;12:127–156. doi: 10.1146/annurev.ne.12.030189.001015. [DOI] [PubMed] [Google Scholar]
  29. Skene J. H., Jacobson R. D., Snipes G. J., McGuire C. B., Norden J. J., Freeman J. A. A protein induced during nerve growth (GAP-43) is a major component of growth-cone membranes. Science. 1986 Aug 15;233(4765):783–786. doi: 10.1126/science.3738509. [DOI] [PubMed] [Google Scholar]
  30. Skene J. H., Virág I. Posttranslational membrane attachment and dynamic fatty acylation of a neuronal growth cone protein, GAP-43. J Cell Biol. 1989 Feb;108(2):613–624. doi: 10.1083/jcb.108.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Skene J. H., Willard M. Axonally transported proteins associated with axon growth in rabbit central and peripheral nervous systems. J Cell Biol. 1981 Apr;89(1):96–103. doi: 10.1083/jcb.89.1.96. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Skene J. H., Willard M. Changes in axonally transported proteins during axon regeneration in toad retinal ganglion cells. J Cell Biol. 1981 Apr;89(1):86–95. doi: 10.1083/jcb.89.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Taniuchi M., Clark H. B., Johnson E. M., Jr Induction of nerve growth factor receptor in Schwann cells after axotomy. Proc Natl Acad Sci U S A. 1986 Jun;83(11):4094–4098. doi: 10.1073/pnas.83.11.4094. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tetzlaff W., Zwiers H., Lederis K., Cassar L., Bisby M. A. Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat. J Neurosci. 1989 Apr;9(4):1303–1313. doi: 10.1523/JNEUROSCI.09-04-01303.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Verhaagen J., van Hooff C. O., Edwards P. M., De Graan P. N., Oestreicher A. B., Schotman P., Jennekens F. G., Gispen W. H. The kinase C substrate protein B-50 and axonal regeneration. Brain Res Bull. 1986 Dec;17(6):737–741. doi: 10.1016/0361-9230(86)90084-5. [DOI] [PubMed] [Google Scholar]
  36. Vitković L., Steisslinger H. W., Aloyo V. J., Mersel M. The 43-kDa neuronal growth-associated protein (GAP-43) is present in plasma membranes of rat astrocytes. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8296–8300. doi: 10.1073/pnas.85.21.8296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Woolf C. J., Reynolds M. L., Molander C., O'Brien C., Lindsay R. M., Benowitz L. I. The growth-associated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience. 1990;34(2):465–478. doi: 10.1016/0306-4522(90)90155-w. [DOI] [PubMed] [Google Scholar]
  38. da Cunha A., Vitković L. Regulation of immunoreactive GAP-43 expression in rat cortical macroglia is cell type specific. J Cell Biol. 1990 Jul;111(1):209–215. doi: 10.1083/jcb.111.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES