Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Mar 2;116(6):1465–1473. doi: 10.1083/jcb.116.6.1465

The activity of cAMP-dependent protein kinase is required at a posttranslational level for induction of voltage-dependent sodium channels by peptide growth factors in PC12 cells

PMCID: PMC2289385  PMID: 1311713

Abstract

The synthesis and expression of voltage-dependent sodium (Na) channels is a crucial aspect of neuronal differentiation because of the central role these ion channels play in the generation of action potentials and the transfer of information in the nervous system. We have used rat pheochromocytoma (PC12) cell lines deficient in cAMP-dependent protein kinase (PKA) activity to examine the role of PKA in the induction of Na channel expression by nerve growth factor (NGF) and basic FGF (bFGF). In the parental PC12 cell line both NGF and bFGF elicit an increase in the density of functional Na channels, as determined from whole-cell patch clamp recordings. This increase does not occur in two PC12 cell lines deficient in both isozymes of PKA (PKAI and PKAII), and is strongly reduced in a third line deficient in PKAII, but not PKAI. Despite the inability of the neurotrophic factors to induce functional Na channel expression in the PKA-deficient cells, Northern blot hybridization studies and saxitoxin binding assays of intact cells indicate that NGF and bFGF are still capable of eliciting increases in both Na channel mRNA and Na channel protein in the membrane. Thus, PKA activity appears to be necessary at a posttranslational step in the synthesis and expression of functional Na channels, and thereby plays an important role in determining neuronal excitability.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auld V. J., Goldin A. L., Krafte D. S., Marshall J., Dunn J. M., Catterall W. A., Lester H. A., Davidson N., Dunn R. J. A rat brain Na+ channel alpha subunit with novel gating properties. Neuron. 1988 Aug;1(6):449–461. doi: 10.1016/0896-6273(88)90176-6. [DOI] [PubMed] [Google Scholar]
  2. Barchi R. L. Probing the molecular structure of the voltage-dependent sodium channel. Annu Rev Neurosci. 1988;11:455–495. doi: 10.1146/annurev.ne.11.030188.002323. [DOI] [PubMed] [Google Scholar]
  3. Beckh S., Noda M., Lübbert H., Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 1989 Dec 1;8(12):3611–3616. doi: 10.1002/j.1460-2075.1989.tb08534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bothwell M. Tissue localization of nerve growth factor and nerve growth factor receptors. Curr Top Microbiol Immunol. 1991;165:55–70. doi: 10.1007/978-3-642-75747-1_4. [DOI] [PubMed] [Google Scholar]
  5. Brady M. J., Nairn A. C., Wagner J. A., Palfrey H. C. Nerve growth factor-induced down-regulation of calmodulin-dependent protein kinase III in PC12 cells involves cyclic AMP-dependent protein kinase. J Neurochem. 1990 Mar;54(3):1034–1039. doi: 10.1111/j.1471-4159.1990.tb02354.x. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Costa M. R., Casnellie J. E., Catterall W. A. Selective phosphorylation of the alpha subunit of the sodium channel by cAMP-dependent protein kinase. J Biol Chem. 1982 Jul 25;257(14):7918–7921. [PubMed] [Google Scholar]
  8. Damon D. H., D'Amore P. A., Wagner J. A. Nerve growth factor and fibroblast growth factor regulate neurite outgrowth and gene expression in PC12 cells via both protein kinase C- and cAMP-independent mechanisms. J Cell Biol. 1990 Apr;110(4):1333–1339. doi: 10.1083/jcb.110.4.1333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dichter M. A., Tischler A. S., Greene L. A. Nerve growth factor-induced increase in electrical excitability and acetylcholine sensitivity of a rat pheochromocytoma cell line. Nature. 1977 Aug 11;268(5620):501–504. doi: 10.1038/268501a0. [DOI] [PubMed] [Google Scholar]
  10. Fujita K., Lazarovici P., Guroff G. Regulation of the differentiation of PC12 pheochromocytoma cells. Environ Health Perspect. 1989 Mar;80:127–142. doi: 10.1289/ehp.8980127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gage F. H., Tuszynski M. H., Chen K. S., Fagan A. M., Higgins G. A. Nerve growth factor function in the central nervous system. Curr Top Microbiol Immunol. 1991;165:71–93. doi: 10.1007/978-3-642-75747-1_5. [DOI] [PubMed] [Google Scholar]
  12. Garber S. S., Hoshi T., Aldrich R. W. Regulation of ionic currents in pheochromocytoma cells by nerve growth factor and dexamethasone. J Neurosci. 1989 Nov;9(11):3976–3987. doi: 10.1523/JNEUROSCI.09-11-03976.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ginty D. D., Glowacka D., DeFranco C., Wagner J. A. Nerve growth factor-induced neuronal differentiation after dominant repression of both type I and type II cAMP-dependent protein kinase activities. J Biol Chem. 1991 Aug 15;266(23):15325–15333. [PubMed] [Google Scholar]
  14. Gordon D., Merrick D., Auld V., Dunn R., Goldin A. L., Davidson N., Catterall W. A. Tissue-specific expression of the RI and RII sodium channel subtypes. Proc Natl Acad Sci U S A. 1987 Dec;84(23):8682–8686. doi: 10.1073/pnas.84.23.8682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gospodarowicz D., Neufeld G., Schweigerer L. Fibroblast growth factor. Mol Cell Endocrinol. 1986 Aug;46(3):187–204. doi: 10.1016/0303-7207(86)90001-8. [DOI] [PubMed] [Google Scholar]
  16. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  19. Hartshorne R. P., Catterall W. A. The sodium channel from rat brain. Purification and subunit composition. J Biol Chem. 1984 Feb 10;259(3):1667–1675. [PubMed] [Google Scholar]
  20. Hartshorne R. P., Messner D. J., Coppersmith J. C., Catterall W. A. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. J Biol Chem. 1982 Dec 10;257(23):13888–13891. [PubMed] [Google Scholar]
  21. Hefti F., Hartikka J., Knusel B. Function of neurotrophic factors in the adult and aging brain and their possible use in the treatment of neurodegenerative diseases. Neurobiol Aging. 1989 Sep-Oct;10(5):515–533. doi: 10.1016/0197-4580(89)90118-8. [DOI] [PubMed] [Google Scholar]
  22. Ifune C. K., Steinbach J. H. Regulation of sodium currents and acetylcholine responses in PC12 cells. Brain Res. 1990 Jan 8;506(2):243–248. doi: 10.1016/0006-8993(90)91257-h. [DOI] [PubMed] [Google Scholar]
  23. Kalman D., Wong B., Horvai A. E., Cline M. J., O'Lague P. H. Nerve growth factor acts through cAMP-dependent protein kinase to increase the number of sodium channels in PC12 cells. Neuron. 1990 Mar;4(3):355–366. doi: 10.1016/0896-6273(90)90048-k. [DOI] [PubMed] [Google Scholar]
  24. Kayano T., Noda M., Flockerzi V., Takahashi H., Numa S. Primary structure of rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 1988 Feb 8;228(1):187–194. doi: 10.1016/0014-5793(88)80614-8. [DOI] [PubMed] [Google Scholar]
  25. Levi-Montalcini R. The nerve growth factor: thirty-five years later. EMBO J. 1987 May;6(5):1145–1154. doi: 10.1002/j.1460-2075.1987.tb02347.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Logan A., Berry M., Thomas G. H., Gregson N. A., Logan S. D. Identification and partial purification of fibroblast growth factor from the brains of developing rats and leucodystrophic mutant mice. Neuroscience. 1985 Aug;15(4):1239–1246. doi: 10.1016/0306-4522(85)90266-0. [DOI] [PubMed] [Google Scholar]
  27. Machida C. M., Rodland K. D., Matrisian L., Magun B. E., Ciment G. NGF induction of the gene encoding the protease transin accompanies neuronal differentiation in PC12 cells. Neuron. 1989 Jun;2(6):1587–1596. doi: 10.1016/0896-6273(89)90047-0. [DOI] [PubMed] [Google Scholar]
  28. Machida C. M., Scott J. D., Ciment G. NGF-induction of the metalloproteinase-transin/stromelysin in PC12 cells: involvement of multiple protein kinases. J Cell Biol. 1991 Sep;114(5):1037–1048. doi: 10.1083/jcb.114.5.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mandel G., Cooperman S. S., Maue R. A., Goodman R. H., Brehm P. Selective induction of brain type II Na+ channels by nerve growth factor. Proc Natl Acad Sci U S A. 1988 Feb;85(3):924–928. doi: 10.1073/pnas.85.3.924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maue R. A., Kraner S. D., Goodman R. H., Mandel G. Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron. 1990 Feb;4(2):223–231. doi: 10.1016/0896-6273(90)90097-y. [DOI] [PubMed] [Google Scholar]
  31. Mobley W. C., Schenker A., Shooter E. M. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry. 1976 Dec 14;15(25):5543–5552. doi: 10.1021/bi00670a019. [DOI] [PubMed] [Google Scholar]
  32. Pollock J. D., Krempin M., Rudy B. Differential effects of NGF, FGF, EGF, cAMP, and dexamethasone on neurite outgrowth and sodium channel expression in PC12 cells. J Neurosci. 1990 Aug;10(8):2626–2637. doi: 10.1523/JNEUROSCI.10-08-02626.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ross A. F., Green W. N., Hartman D. S., Claudio T. Efficiency of acetylcholine receptor subunit assembly and its regulation by cAMP. J Cell Biol. 1991 May;113(3):623–636. doi: 10.1083/jcb.113.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rossie S., Catterall W. A. Cyclic-AMP-dependent phosphorylation of voltage-sensitive sodium channels in primary cultures of rat brain neurons. J Biol Chem. 1987 Sep 15;262(26):12735–12744. [PubMed] [Google Scholar]
  35. Rossie S., Gordon D., Catterall W. A. Identification of an intracellular domain of the sodium channel having multiple cAMP-dependent phosphorylation sites. J Biol Chem. 1987 Dec 25;262(36):17530–17535. [PubMed] [Google Scholar]
  36. Rudy B., Kirschenbaum B., Greene L. A. Nerve growth factor-induced increase in saxitoxin binding to rat PC12 pheochromocytoma cells. J Neurosci. 1982 Oct;2(10):1405–1411. doi: 10.1523/JNEUROSCI.02-10-01405.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scheinman R. I., Auld V. J., Goldin A. L., Davidson N., Dunn R. J., Catterall W. A. Developmental regulation of sodium channel expression in the rat forebrain. J Biol Chem. 1989 Jun 25;264(18):10660–10666. [PubMed] [Google Scholar]
  38. Schmidt J. W., Catterall W. A. Biosynthesis and processing of the alpha subunit of the voltage-sensitive sodium channel in rat brain neurons. Cell. 1986 Aug 1;46(3):437–444. doi: 10.1016/0092-8674(86)90664-1. [DOI] [PubMed] [Google Scholar]
  39. Schmidt J., Rossie S., Catterall W. A. A large intracellular pool of inactive Na channel alpha subunits in developing rat brain. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4847–4851. doi: 10.1073/pnas.82.14.4847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stephan M., Agnew W. S. Voltage-sensitive Na+ channels: motifs, modes and modulation. Curr Opin Cell Biol. 1991 Aug;3(4):676–684. doi: 10.1016/0955-0674(91)90041-v. [DOI] [PubMed] [Google Scholar]
  41. Stewart S. S., Appel S. H. Trophic factors in neurologic disease. Annu Rev Med. 1988;39:193–201. doi: 10.1146/annurev.me.39.020188.001205. [DOI] [PubMed] [Google Scholar]
  42. Suzuki H., Beckh S., Kubo H., Yahagi N., Ishida H., Kayano T., Noda M., Numa S. Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett. 1988 Feb 8;228(1):195–200. doi: 10.1016/0014-5793(88)80615-x. [DOI] [PubMed] [Google Scholar]
  43. Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
  44. Trimmer J. S., Agnew W. S. Molecular diversity of voltage-sensitive Na channels. Annu Rev Physiol. 1989;51:401–418. doi: 10.1146/annurev.ph.51.030189.002153. [DOI] [PubMed] [Google Scholar]
  45. Van Buskirk R., Corcoran T., Wagner J. A. Clonal variants of PC12 pheochromocytoma cells with defects in cAMP-dependent protein kinases induce ornithine decarboxylase in response to nerve growth factor but not to adenosine agonists. Mol Cell Biol. 1985 Aug;5(8):1984–1992. doi: 10.1128/mcb.5.8.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wagner J. A., Kostyk S. K. Regulation of neural cell survival and differentiation by peptide growth factors. Curr Opin Cell Biol. 1990 Dec;2(6):1050–1057. doi: 10.1016/0955-0674(90)90155-8. [DOI] [PubMed] [Google Scholar]
  47. Wagner J. A. The fibroblast growth factors: an emerging family of neural growth factors. Curr Top Microbiol Immunol. 1991;165:95–118. doi: 10.1007/978-3-642-75747-1_6. [DOI] [PubMed] [Google Scholar]
  48. Wollner D. A., Scheinman R., Catterall W. A. Sodium channel expression and assembly during development of retinal ganglion cells. Neuron. 1988 Oct;1(8):727–737. doi: 10.1016/0896-6273(88)90171-7. [DOI] [PubMed] [Google Scholar]
  49. Woodford T. A., Correll L. A., McKnight G. S., Corbin J. D. Expression and characterization of mutant forms of the type I regulatory subunit of cAMP-dependent protein kinase. The effect of defective cAMP binding on holoenzyme activation. J Biol Chem. 1989 Aug 5;264(22):13321–13328. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES