Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Apr 1;117(1):157–167. doi: 10.1083/jcb.117.1.157

Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5- trisphosphate-dependent mechanism

PMCID: PMC2289393  PMID: 1556150

Abstract

In Xenopus laevis oocytes, activation of angiotensin II (AII) receptors on the surrounding follicular cells sends a signal through gap junctions to elevate cytoplasmic calcium concentration ([Ca2+]i) within the oocyte. The two major candidates for signal transfer through gap junctions into the oocyte during AII receptor stimulation are Ins(1,4,5)P3 and Ca2+. In [3H]inositol-injected follicular oocytes, AII stimulated two- to fourfold increases in phosphoinositide hydrolysis and production of inositol phosphates. Injection of the glycosaminoglycan, heparin, which selectively blocks Ins(1,4,5)P3 receptors, prevented both AII-stimulated and Ins(1,4,5)P3-induced Ca2+ mobilization in Xenopus follicular oocytes but did not affect mobilization of Ca2+ by ionomycin or GTP. These results indicate that the AII-regulated process of gap junction communication between follicular cells and the oocyte operates through an Ins(1,4,5)P3- dependent mechanism rather than through transfer of Ca2+ into the ooplasm and subsequent Ca(2+)-induced Ca2+ release.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balla T., Baukal A. J., Guillemette G., Catt K. J. Multiple pathways of inositol polyphosphate metabolism in angiotensin-stimulated adrenal glomerulosa cells. J Biol Chem. 1988 Mar 25;263(9):4083–4091. [PubMed] [Google Scholar]
  2. Balla T., Baukal A. J., Guillemette G., Morgan R. O., Catt K. J. Angiotensin-stimulated production of inositol trisphosphate isomers and rapid metabolism through inositol 4-monophosphate in adrenal glomerulosa cells. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9323–9327. doi: 10.1073/pnas.83.24.9323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  4. Blinks J. R., Prendergast F. G., Allen D. G. Photoproteins as biological calcium indicators. Pharmacol Rev. 1976 Mar;28(1):1–93. [PubMed] [Google Scholar]
  5. Bradford P. G., Irvine R. F. Specific binding sites for [3H]inositol(1,3,4,5)tetrakisphosphate on membranes of HL-60 cells. Biochem Biophys Res Commun. 1987 Dec 16;149(2):680–685. doi: 10.1016/0006-291x(87)90421-9. [DOI] [PubMed] [Google Scholar]
  6. Brooker G., Seki T., Croll D., Wahlestedt C. Calcium wave evoked by activation of endogenous or exogenously expressed receptors in Xenopus oocytes. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2813–2817. doi: 10.1073/pnas.87.7.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Browne C. L., Wiley H. S., Dumont J. N. Oocyte-follicle cell gap junctions in Xenopus laevis and the effects of gonadotropin on their permeability. Science. 1979 Jan 12;203(4376):182–183. doi: 10.1126/science.569364. [DOI] [PubMed] [Google Scholar]
  8. Catt K. J., Carson M. C., Hausdorff W. P., Leach-Harper C. M., Baukal A. J., Guillemette G., Balla T., Aguilera G. Angiotensin II receptors and mechanisms of action in adrenal glomerulosa cells. J Steroid Biochem. 1987;27(4-6):915–927. doi: 10.1016/0022-4731(87)90168-3. [DOI] [PubMed] [Google Scholar]
  9. Chueh S. H., Gill D. L. Inositol 1,4,5-trisphosphate and guanine nucleotides activate calcium release from endoplasmic reticulum via distinct mechanisms. J Biol Chem. 1986 Oct 25;261(30):13883–13886. [PubMed] [Google Scholar]
  10. Cicirelli M. F., Robinson K. R., Smith L. D. Internal pH of Xenopus oocytes: a study of the mechanism and role of pH changes during meiotic maturation. Dev Biol. 1983 Nov;100(1):133–146. doi: 10.1016/0012-1606(83)90204-x. [DOI] [PubMed] [Google Scholar]
  11. Crossley I., Swann K., Chambers E., Whitaker M. Activation of sea urchin eggs by inositol phosphates is independent of external calcium. Biochem J. 1988 May 15;252(1):257–262. doi: 10.1042/bj2520257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davidson A., Mengod G., Matus-Leibovitch N., Oron Y. Native Xenopus oocytes express two types of muscarinic receptors. FEBS Lett. 1991 Jun 24;284(2):252–256. doi: 10.1016/0014-5793(91)80697-2. [DOI] [PubMed] [Google Scholar]
  13. DeLisle S., Krause K. H., Denning G., Potter B. V., Welsh M. J. Effect of inositol trisphosphate and calcium on oscillating elevations of intracellular calcium in Xenopus oocytes. J Biol Chem. 1990 Jul 15;265(20):11726–11730. [PubMed] [Google Scholar]
  14. Ely J. A., Hunyady L., Baukal A. J., Catt K. J. Inositol 1,3,4,5-tetrakisphosphate stimulates calcium release from bovine adrenal microsomes by a mechanism independent of the inositol 1,4,5-trisphosphate receptor. Biochem J. 1990 Jun 1;268(2):333–338. doi: 10.1042/bj2680333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Enyedi P., Büki B., Muscsi I., Spät A. Polyphosphoinositide metabolism in adrenal glomerulosa cells. Mol Cell Endocrinol. 1985 Jun;41(1):105–112. doi: 10.1016/0303-7207(85)90147-9. [DOI] [PubMed] [Google Scholar]
  16. Finch E. A., Turner T. J., Goldin S. M. Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. Science. 1991 Apr 19;252(5004):443–446. doi: 10.1126/science.2017683. [DOI] [PubMed] [Google Scholar]
  17. Fluharty S. J., Reagan L. P., White M. M. Endogenous and expressed angiotensin II receptors on Xenopus oocytes. J Neurochem. 1991 Apr;56(4):1307–1311. doi: 10.1111/j.1471-4159.1991.tb11426.x. [DOI] [PubMed] [Google Scholar]
  18. Gardiner D. M., Grey R. D. Membrane junctions in Xenopus eggs: their distribution suggests a role in calcium regulation. J Cell Biol. 1983 Apr;96(4):1159–1163. doi: 10.1083/jcb.96.4.1159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ghosh T. K., Eis P. S., Mullaney J. M., Ebert C. L., Gill D. L. Competitive, reversible, and potent antagonism of inositol 1,4,5-trisphosphate-activated calcium release by heparin. J Biol Chem. 1988 Aug 15;263(23):11075–11079. [PubMed] [Google Scholar]
  20. Ghosh T. K., Mullaney J. M., Tarazi F. I., Gill D. L. GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitive and -insensitive calcium pools. Nature. 1989 Jul 20;340(6230):236–239. doi: 10.1038/340236a0. [DOI] [PubMed] [Google Scholar]
  21. Guillemette G., Lamontagne S., Boulay G., Mouillac B. Differential effects of heparin on inositol 1,4,5-trisphosphate binding, metabolism, and calcium release activity in the bovine adrenal cortex. Mol Pharmacol. 1989 Mar;35(3):339–344. [PubMed] [Google Scholar]
  22. Guthrie S. C., Gilula N. B. Gap junctional communication and development. Trends Neurosci. 1989 Jan;12(1):12–16. doi: 10.1016/0166-2236(89)90150-1. [DOI] [PubMed] [Google Scholar]
  23. Hill T. D., Berggren P. O., Boynton A. L. Heparin inhibits inositol trisphosphate-induced calcium release from permeabilized rat liver cells. Biochem Biophys Res Commun. 1987 Dec 31;149(3):897–901. doi: 10.1016/0006-291x(87)90492-x. [DOI] [PubMed] [Google Scholar]
  24. Ji H., Sandberg K., Baukal A. J., Catt K. J. Metabolism of inositol pentakisphosphate to inositol hexakisphosphate in Xenopus laevis oocytes. J Biol Chem. 1989 Dec 5;264(34):20185–20188. [PubMed] [Google Scholar]
  25. Johnson R. G., Sheridan J. D. Junctions between cancer cells in culture: ultrastructure and permeability. Science. 1971 Nov 12;174(4010):717–719. doi: 10.1126/science.174.4010.717. [DOI] [PubMed] [Google Scholar]
  26. Joseph S. K., Hansen C. A., Williamson J. R. Inositol tetrakisphosphate mobilizes calcium from cerebellum microsomes. Mol Pharmacol. 1989 Sep;36(3):391–397. [PubMed] [Google Scholar]
  27. Joseph S. K., Rice H. L. The relationship between inositol trisphosphate receptor density and calcium release in brain microsomes. Mol Pharmacol. 1989 Mar;35(3):355–359. [PubMed] [Google Scholar]
  28. Kusano K., Miledi R., Stinnakre J. Cholinergic and catecholaminergic receptors in the Xenopus oocyte membrane. J Physiol. 1982 Jul;328:143–170. doi: 10.1113/jphysiol.1982.sp014257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Larsen W. J., Wert S. E., Brunner G. D. A dramatic loss of cumulus cell gap junctions is correlated with germinal vesicle breakdown in rat oocytes. Dev Biol. 1986 Feb;113(2):517–521. doi: 10.1016/0012-1606(86)90187-9. [DOI] [PubMed] [Google Scholar]
  30. Lupu-Meiri M., Shapira H., Matus-Leibovitch N., Oron Y. Two types of intrinsic muscarinic responses in Xenopus oocytes. I. Differences in latencies and 45Ca efflux kinetics. Pflugers Arch. 1990 Dec;417(4):391–397. doi: 10.1007/BF00370658. [DOI] [PubMed] [Google Scholar]
  31. Lupu-Meiri M., Shapira H., Oron Y. Hemispheric asymmetry of rapid chloride responses to inositol trisphosphate and calcium in Xenopus oocytes. FEBS Lett. 1988 Nov 21;240(1-2):83–87. doi: 10.1016/0014-5793(88)80344-2. [DOI] [PubMed] [Google Scholar]
  32. Matus-Leibovitch N., Lupu-Meiri M., Oron Y. Two types of intrinsic muscarinic responses in Xenopus oocytes. II. Hemispheric asymmetry of responses and receptor distribution. Pflugers Arch. 1990 Oct;417(2):194–199. doi: 10.1007/BF00370699. [DOI] [PubMed] [Google Scholar]
  33. McIntosh R. P., McIntosh J. E. Diversity in responses from endogenous and expressed mammalian receptors which cause chloride ion efflux from ovarian follicles of Xenopus laevis. Arch Biochem Biophys. 1990 Nov 15;283(1):135–140. doi: 10.1016/0003-9861(90)90623-7. [DOI] [PubMed] [Google Scholar]
  34. McIntosh R. P., McIntosh J. E. Metabolism of the biologically active inositol phosphates Ins(1,4,5)P3 and Ins(1,3,4,5)P4 by ovarian follicles of Xenopus laevis. Biochem J. 1990 May 15;268(1):141–145. doi: 10.1042/bj2680141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Morris A. J., Murray K. J., England P. J., Downes C. P., Michell R. H. Partial purification and some properties of rat brain inositol 1,4,5-trisphosphate 3-kinase. Biochem J. 1988 Apr 1;251(1):157–163. doi: 10.1042/bj2510157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mullaney J. M., Chueh S. H., Ghosh T. K., Gill D. L. Intracellular calcium uptake activated by GTP. Evidence for a possible guanine nucleotide-induced transmembrane conveyance of intracellular calcium. J Biol Chem. 1987 Oct 5;262(28):13865–13872. [PubMed] [Google Scholar]
  37. Nilsson T., Zwiller J., Boynton A. L., Berggren P. O. Heparin inhibits IP3-induced Ca2+ release in permeabilized pancreatic beta-cells. FEBS Lett. 1988 Feb 29;229(1):211–214. doi: 10.1016/0014-5793(88)80829-9. [DOI] [PubMed] [Google Scholar]
  38. Ozaki Y., Yatomi Y., Kariya T., Kume S. Correlation of intracellular and extracellular calcium ion concentrations with synergy between 1,2-dioctanoyl-sn-glycerol and ionomycin in platelet arachidonic acid mobilization. Biochim Biophys Acta. 1989 Jun 15;1012(1):87–96. doi: 10.1016/0167-4889(89)90015-3. [DOI] [PubMed] [Google Scholar]
  39. Parker I., Miledi R. Changes in intracellular calcium and in membrane currents evoked by injection of inositol trisphosphate into Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1986 Aug 22;228(1252):307–315. doi: 10.1098/rspb.1986.0057. [DOI] [PubMed] [Google Scholar]
  40. Parker I., Miledi R. Injection of inositol 1,3,4,5-tetrakisphosphate into Xenopus oocytes generates a chloride current dependent upon intracellular calcium. Proc R Soc Lond B Biol Sci. 1987 Oct 22;232(1266):59–70. doi: 10.1098/rspb.1987.0061. [DOI] [PubMed] [Google Scholar]
  41. Petersen O. H. Does inositol tetrakisphosphate play a role in the receptor-mediated control of calcium mobilization? Cell Calcium. 1989 Jul;10(5):375–383. doi: 10.1016/0143-4160(89)90063-8. [DOI] [PubMed] [Google Scholar]
  42. Rieske E., Schubert P., Kreutzberg G. W. Transfer of radioactive material between electrically coupled neurons of the leech central nervous system. Brain Res. 1975 Feb 14;84(3):365–382. doi: 10.1016/0006-8993(75)90759-3. [DOI] [PubMed] [Google Scholar]
  43. Sandberg K., Bor M., Ji H., Markwick A., Millan M. A., Catt K. J. Angiotensin II-induced calcium mobilization in oocytes by signal transfer through gap junctions. Science. 1990 Jul 20;249(4966):298–301. doi: 10.1126/science.2374929. [DOI] [PubMed] [Google Scholar]
  44. Sandberg K., Markwick A. J., Trinh D. P., Catt K. J. Calcium mobilization by angiotensin II and neurotransmitter receptors expressed in Xenopus laevis oocytes. FEBS Lett. 1988 Dec 5;241(1-2):177–180. doi: 10.1016/0014-5793(88)81055-x. [DOI] [PubMed] [Google Scholar]
  45. Shapira H., Lupu-Meiri M., Gershengorn M. C., Oron Y. Activation of two different receptors mobilizes calcium from distinct stores in Xenopus oocytes. Biophys J. 1990 Jun;57(6):1281–1285. doi: 10.1016/S0006-3495(90)82646-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Shears S. B., Storey D. J., Morris A. J., Cubitt A. B., Parry J. B., Michell R. H., Kirk C. J. Dephosphorylation of myo-inositol 1,4,5-trisphosphate and myo-inositol 1,3,4-triphosphate. Biochem J. 1987 Mar 1;242(2):393–402. doi: 10.1042/bj2420393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sherizly I., Galiani D., Dekel N. Regulation of oocyte maturation: communication in the rat cumulus-oocyte complex. Hum Reprod. 1988 Aug;3(6):761–766. doi: 10.1093/oxfordjournals.humrep.a136780. [DOI] [PubMed] [Google Scholar]
  48. Simpson I., Rose B., Loewenstein W. R. Size limit of molecules permeating the junctional membrane channels. Science. 1977 Jan 21;195(4275):294–296. doi: 10.1126/science.831276. [DOI] [PubMed] [Google Scholar]
  49. Smith J. B., Smith L., Higgins B. L. Temperature and nucleotide dependence of calcium release by myo-inositol 1,4,5-trisphosphate in cultured vascular smooth muscle cells. J Biol Chem. 1985 Nov 25;260(27):14413–14416. [PubMed] [Google Scholar]
  50. Snyder P. M., Krause K. H., Welsh M. J. Inositol trisphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate, induce calcium influx in Xenopus laevis oocytes. J Biol Chem. 1988 Aug 15;263(23):11048–11051. [PubMed] [Google Scholar]
  51. Stith B. J., Proctor W. R. Microinjection of inositol 1,2-(cyclic)-4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate, and inositol 1,4,5-trisphosphate into intact Xenopus oocytes can induce membrane currents independent of extracellular calcium. J Cell Biochem. 1989 Jul;40(3):321–330. doi: 10.1002/jcb.240400308. [DOI] [PubMed] [Google Scholar]
  52. Supattapone S., Worley P. F., Baraban J. M., Snyder S. H. Solubilization, purification, and characterization of an inositol trisphosphate receptor. J Biol Chem. 1988 Jan 25;263(3):1530–1534. [PubMed] [Google Scholar]
  53. Sáez J. C., Connor J. A., Spray D. C., Bennett M. V. Hepatocyte gap junctions are permeable to the second messenger, inositol 1,4,5-trisphosphate, and to calcium ions. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2708–2712. doi: 10.1073/pnas.86.8.2708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Theibert A. B., Supattapone S., Worley P. F., Baraban J. M., Meek J. L., Snyder S. H. Demonstration of inositol 1,3,4,5-tetrakisphosphate receptor binding. Biochem Biophys Res Commun. 1987 Nov 13;148(3):1283–1289. doi: 10.1016/s0006-291x(87)80272-3. [DOI] [PubMed] [Google Scholar]
  55. Tones M. A., Bootman M. D., Higgins B. F., Lane D. A., Pay G. F., Lindahl U. The effect of heparin on the inositol 1,4,5-trisphosphate receptor in rat liver microsomes. Dependence on sulphate content and chain length. FEBS Lett. 1989 Jul 31;252(1-2):105–108. doi: 10.1016/0014-5793(89)80898-1. [DOI] [PubMed] [Google Scholar]
  56. Woodward R. M., Miledi R. Angiotensin II receptors in Xenopus oocytes. Proc Biol Sci. 1991 Apr 22;244(1309):11–19. doi: 10.1098/rspb.1991.0044. [DOI] [PubMed] [Google Scholar]
  57. Worley P. F., Baraban J. M., Supattapone S., Wilson V. S., Snyder S. H. Characterization of inositol trisphosphate receptor binding in brain. Regulation by pH and calcium. J Biol Chem. 1987 Sep 5;262(25):12132–12136. [PubMed] [Google Scholar]
  58. Yatomi Y., Higashihara M., Ozaki Y., Kume S., Kurokawa K. Intracellular ionized calcium mobilization of CD 9 monoclonal antibody-activated human platelets. Biochem Biophys Res Commun. 1990 Aug 31;171(1):109–115. doi: 10.1016/0006-291x(90)91363-w. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES