Abstract
Processes such as cell locomotion and morphogenesis depend on both the generation of force by cytoskeletal elements and the response of the cell to the resulting mechanical loads. Many widely accepted theoretical models of processes involving cell shape change are based on untested hypotheses about the interaction of these two components of cell shape change. I have quantified the mechanical responses of cytoplasm to various chemical environments and mechanical loading regimes to understand better the mechanisms of cell shape change and to address the validity of these models. Measurements of cell mechanical properties were made with strands of cytoplasm submerged in media containing detergent to permeabilize the plasma membrane, thus allowing control over intracellular milieu. Experiments were performed with equipment that generated sinusoidally varying length changes of isolated strands of cytoplasm from Physarum polycephalum. Results indicate that stiffness, elasticity, and viscosity of cytoplasm all increase with increasing concentration of Ca2+, Mg2+, and ATP, and decrease with increasing magnitude and rate of deformation. These results specifically challenge assumptions underlying mathematical models of morphogenetic events such as epithelial folding and cell division, and further suggest that gelation may depend on both actin cross-linking and actin polymerization.
Full Text
The Full Text of this article is available as a PDF (1.2 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BYERS B., PORTER K. R. ORIENTED MICROTUBULES IN ELONGATING CELLS OF THE DEVELOPING LENS RUDIMENT AFTER INDUCTION. Proc Natl Acad Sci U S A. 1964 Oct;52:1091–1099. doi: 10.1073/pnas.52.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Belintsev B. N., Beloussov L. V., Zaraisky A. G. Model of pattern formation in epithelial morphogenesis. J Theor Biol. 1987 Dec 21;129(4):369–394. doi: 10.1016/s0022-5193(87)80019-x. [DOI] [PubMed] [Google Scholar]
- Elson E. L. Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Biophys Chem. 1988;17:397–430. doi: 10.1146/annurev.bb.17.060188.002145. [DOI] [PubMed] [Google Scholar]
- Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
- Götz von Olenhusen K. G., Wohlfarth-Bottermann K. E. Effects of caffeine and D2O on persistence and de novo generation of intrinsic oscillatory contraction automaticity in Physarum. Cell Tissue Res. 1979 Apr 12;197(3):479–499. doi: 10.1007/BF00233572. [DOI] [PubMed] [Google Scholar]
- Hasegawa T., Takahashi S., Hayashi H., Hatano S. Fragmin: a calcium ion sensitive regulatory factor on the formation of actin filaments. Biochemistry. 1980 Jun 10;19(12):2677–2683. doi: 10.1021/bi00553a021. [DOI] [PubMed] [Google Scholar]
- Hiramoto Y. Rheological properties of sea urchin eggs. Biorheology. 1970 Jan;6(3):201–234. doi: 10.3233/bir-1970-6306. [DOI] [PubMed] [Google Scholar]
- Matsumura F., Yoshimoto Y., Kamiya N. Tension generation by actomyosin thread from a non-muscle system. Nature. 1980 May 15;285(5761):169–171. doi: 10.1038/285169a0. [DOI] [PubMed] [Google Scholar]
- Miller R. J. Calcium signalling in neurons. Trends Neurosci. 1988 Oct;11(10):415–419. doi: 10.1016/0166-2236(88)90191-9. [DOI] [PubMed] [Google Scholar]
- Mittenthal J. E., Mazo R. M. A model for shape generation by strain and cell-cell adhesion in the epithelium of an arthropod leg segment. J Theor Biol. 1983 Feb 7;100(3):443–483. doi: 10.1016/0022-5193(83)90441-1. [DOI] [PubMed] [Google Scholar]
- Murakami A. Control of ciliary beat frequency in the gill of Mytilus--II. Effects of saponin and Brij-58 on the lateral cilia. Comp Biochem Physiol C. 1987;86(2):281–287. doi: 10.1016/0742-8413(87)90080-6. [DOI] [PubMed] [Google Scholar]
- Nagai R., Yoshimoto R. N., Kamiya N. Cyclic production of tension force in the plasmodial strand of Physarum polycephalum and its relation to microfilament morphology. J Cell Sci. 1978 Oct;33:205–225. doi: 10.1242/jcs.33.1.205. [DOI] [PubMed] [Google Scholar]
- Odell G. M., Oster G., Alberch P., Burnside B. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev Biol. 1981 Jul 30;85(2):446–462. doi: 10.1016/0012-1606(81)90276-1. [DOI] [PubMed] [Google Scholar]
- Ogihara S. Calcium and ATP regulation of the oscillatory torsional movement in a triton model of Physarum plasmodial strands. Exp Cell Res. 1982 Apr;138(2):377–384. doi: 10.1016/0014-4827(82)90186-0. [DOI] [PubMed] [Google Scholar]
- Ogihara S., Tonomura Y. A novel 36,000-dalton actin-binding protein purified from microfilaments in Physarum plasmodia which aggregates actin filaments and blocks actin-myosin interaction. J Cell Biol. 1982 Jun;93(3):604–614. doi: 10.1083/jcb.93.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oster G. F., Murray J. D., Harris A. K. Mechanical aspects of mesenchymal morphogenesis. J Embryol Exp Morphol. 1983 Dec;78:83–125. [PubMed] [Google Scholar]
- Pollard T. D., Aebi U., Cooper J. A., Fowler W. E., Tseng P. Actin structure, polymerization, and gelation. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):513–524. doi: 10.1101/sqb.1982.046.01.048. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Ito S. Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J Cell Biol. 1970 Aug;46(2):267–289. doi: 10.1083/jcb.46.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Priess J. R., Hirsh D. I. Caenorhabditis elegans morphogenesis: the role of the cytoskeleton in elongation of the embryo. Dev Biol. 1986 Sep;117(1):156–173. doi: 10.1016/0012-1606(86)90358-1. [DOI] [PubMed] [Google Scholar]
- Rappaport R. Cell division: direct measurement of maximum tension exerted by furrow of echinoderm eggs. Science. 1967 Jun 2;156(3779):1241–1243. doi: 10.1126/science.156.3779.1241. [DOI] [PubMed] [Google Scholar]
- Sato M., Schwarz W. H., Pollard T. D. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. 1987 Feb 26-Mar 4Nature. 325(6107):828–830. doi: 10.1038/325828a0. [DOI] [PubMed] [Google Scholar]
- Sato M., Wong T. Z., Allen R. D. Rheological properties of living cytoplasm: endoplasm of Physarum plasmodium. J Cell Biol. 1983 Oct;97(4):1089–1097. doi: 10.1083/jcb.97.4.1089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spooner B. S., Wessells N. K. An analysis of salivary gland morphogenesis: role of cytoplasmic microfilaments and microtubules. Dev Biol. 1972 Jan;27(1):38–54. doi: 10.1016/0012-1606(72)90111-x. [DOI] [PubMed] [Google Scholar]
- Stopak D., Harris A. K. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev Biol. 1982 Apr;90(2):383–398. doi: 10.1016/0012-1606(82)90388-8. [DOI] [PubMed] [Google Scholar]
- Stout M. A., Diecke F. P. 45Ca distribution and transport in saponin skinned vascular smooth muscle. J Pharmacol Exp Ther. 1983 Apr;225(1):102–111. [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S., Moore P. L., Allen R. D. The contractile basis of amoeboid movement. I. The chemical control of motility in isolated cytoplasm. J Cell Biol. 1973 Nov;59(2 Pt 1):378–394. doi: 10.1083/jcb.59.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueda T., Götz von Olenhusen K., Wohlfarth-Bottermann K. E. Reaction of the contractile apparatus in Physarum to injected Ca++, ATP, ADP and 5'AMP. Cytobiologie. 1978 Oct;18(1):76–94. [PubMed] [Google Scholar]
- White J. G., Borisy G. G. On the mechanisms of cytokinesis in animal cells. J Theor Biol. 1983 Mar 21;101(2):289–316. doi: 10.1016/0022-5193(83)90342-9. [DOI] [PubMed] [Google Scholar]
- Zaner K. S., Hartwig J. H. The effect of filament shortening on the mechanical properties of gel-filtered actin. J Biol Chem. 1988 Apr 5;263(10):4532–4536. [PubMed] [Google Scholar]