Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Apr 1;117(1):135–141. doi: 10.1083/jcb.117.1.135

Concentration-dependent regulation of neuronal gene expression by nerve growth factor

PMCID: PMC2289402  PMID: 1348250

Abstract

NGF is a neurotrophic protein that promotes the survival, growth, and differentiation of developing sympathetic neurons. To directly determine the effects of different concentrations of NGF on neuronal gene expression, we examined mRNAs encoding the p75 low-affinity NGF (LNGF) receptor, T alpha 1 alpha-tubulin (T alpha 1), and tyrosine hydroxylase (TH) in pure cultures of rat sympathetic neurons from postnatal day 1 superior cervical ganglia. Studies of the timecourse of gene expression during 2 wk in culture indicated that a 5-d incubation period would be optimal for the concentration-effect studies. Analysis of RNA isolated from neurons cultured in 2-200 ng/ml 2.5S NGF for 5 d revealed that, as the NGF concentration increased, neurons expressed correspondingly increased levels of all three mRNAs. Both LNGF receptor and TH mRNAs increased seven-fold, and T alpha 1 mRNA increased four- fold in neurons cultured in 200 versus 10 ng/ml NGF. In contrast, T26 alpha-tubulin mRNA, which is constitutively expressed, did not alter as a function of NGF concentration. When neurons were initially cultured in 10 ng/ml NGF for 5 d, and then 200 ng/ml NGF was added, LNGF receptor, T alpha 1, and TH mRNAs all increased within 48 h. The timecourse of induction differed: T alpha 1 mRNA was maximal by 5 h, whereas LNGF receptor and TH mRNAs first began to increase at 12 h after the NGF increase. These experiments show that NGF regulates expression of a subset of mRNAs important to neuronal growth and differentiation over a broad concentration range, suggesting that the effects of NGF may be mediated by more than just a single receptor operating at one fixed affinity. These results also suggest a mechanism for coupling neuronal synthesis of axonal proteins to increases in size of the innervated target territory during growth of the organism.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acheson A., Barker P. A., Alderson R. F., Miller F. D., Murphy R. A. Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF. Neuron. 1991 Aug;7(2):265–275. doi: 10.1016/0896-6273(91)90265-2. [DOI] [PubMed] [Google Scholar]
  2. Aloe L., Cozzari C., Calissano P., Levi-Montalcini R. Somatic and behavioral postnatal effects of fetal injections of nerve growth factor antibodies in the rat. Nature. 1981 Jun 4;291(5814):413–415. doi: 10.1038/291413a0. [DOI] [PubMed] [Google Scholar]
  3. Angeletti P. U., Levi-Montalcini R., Caramia F. Analysis of the effects of the antiserum to the nerve growth factor in adult mice. Brain Res. 1971 Apr 2;27(2):343–355. doi: 10.1016/0006-8993(71)90259-9. [DOI] [PubMed] [Google Scholar]
  4. Barde Y. A., Edgar D., Thoenen H. Purification of a new neurotrophic factor from mammalian brain. EMBO J. 1982;1(5):549–553. doi: 10.1002/j.1460-2075.1982.tb01207.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bernd P., Greene L. A. Association of 125I-nerve growth factor with PC12 pheochromocytoma cells. Evidence for internalization via high-affinity receptors only and for long-term regulation by nerve growth factor of both high- and low-affinity receptors. J Biol Chem. 1984 Dec 25;259(24):15509–15516. [PubMed] [Google Scholar]
  6. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buck C. R., Martinez H. J., Black I. B., Chao M. V. Developmentally regulated expression of the nerve growth factor receptor gene in the periphery and brain. Proc Natl Acad Sci U S A. 1987 May;84(9):3060–3063. doi: 10.1073/pnas.84.9.3060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campenot R. B. Development of sympathetic neurons in compartmentalized cultures. Il Local control of neurite growth by nerve growth factor. Dev Biol. 1982 Sep;93(1):1–12. doi: 10.1016/0012-1606(82)90232-9. [DOI] [PubMed] [Google Scholar]
  9. Campenot R. B., Draker D. D. Growth of sympathetic nerve fibers in culture does not require extracellular calcium. Neuron. 1989 Dec;3(6):733–743. doi: 10.1016/0896-6273(89)90242-0. [DOI] [PubMed] [Google Scholar]
  10. Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. I. Survival, growth, and differentiation of catecholamine production. J Cell Biol. 1977 Dec;75(3):694–704. doi: 10.1083/jcb.75.3.694. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chun L. L., Patterson P. H. Role of nerve growth factor in the development of rat sympathetic neurons in vitro. II. Developmental studies. J Cell Biol. 1977 Dec;75(3):705–711. doi: 10.1083/jcb.75.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crutcher K. A., Chandler J. P. Evidence for sprouting specificity following medial septal lesions in the rat. J Comp Neurol. 1985 Jul 1;237(1):116–126. doi: 10.1002/cne.902370109. [DOI] [PubMed] [Google Scholar]
  13. Diamond J., Coughlin M., Macintyre L., Holmes M., Visheau B. Evidence that endogenous beta nerve growth factor is responsible for the collateral sprouting, but not the regeneration, of nociceptive axons in adult rats. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6596–6600. doi: 10.1073/pnas.84.18.6596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dornay M., Gilad V. H., Gilad G. M. Compensatory changes in contralateral sympathetic neurons of the superior cervical ganglion and in their terminals in the pineal gland following unilateral ganglionectomy. J Neurosci. 1985 Jun;5(6):1522–1526. doi: 10.1523/JNEUROSCI.05-06-01522.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Edwards R. H., Rutter W. J., Hanahan D. Directed expression of NGF to pancreatic beta cells in transgenic mice leads to selective hyperinnervation of the islets. Cell. 1989 Jul 14;58(1):161–170. doi: 10.1016/0092-8674(89)90412-1. [DOI] [PubMed] [Google Scholar]
  16. Feinstein D. L., Larhammar D. Identification of a conserved protein motif in a group of growth factor receptors. FEBS Lett. 1990 Oct 15;272(1-2):7–11. doi: 10.1016/0014-5793(90)80437-n. [DOI] [PubMed] [Google Scholar]
  17. Gizang-Ginsberg E., Ziff E. B. Nerve growth factor regulates tyrosine hydroxylase gene transcription through a nucleoprotein complex that contains c-Fos. Genes Dev. 1990 Apr;4(4):477–491. doi: 10.1101/gad.4.4.477. [DOI] [PubMed] [Google Scholar]
  18. Gorin P. D., Johnson E. M., Jr Effects of long-term nerve growth factor deprivation on the nervous system of the adult rat: an experimental autoimmune approach. Brain Res. 1980 Sep 29;198(1):27–42. doi: 10.1016/0006-8993(80)90341-8. [DOI] [PubMed] [Google Scholar]
  19. Green S. H., Rydel R. E., Connolly J. L., Greene L. A. PC12 cell mutants that possess low- but not high-affinity nerve growth factor receptors neither respond to nor internalize nerve growth factor. J Cell Biol. 1986 Mar;102(3):830–843. doi: 10.1083/jcb.102.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hawrot E., Patterson P. H. Long-term culture of dissociated sympathetic neurons. Methods Enzymol. 1979;58:574–584. doi: 10.1016/s0076-6879(79)58174-9. [DOI] [PubMed] [Google Scholar]
  21. Hefti F., Gnahn H., Schwab M. E., Thoenen H. Induction of tyrosine hydroxylase by nerve growth factor and by elevated K+ concentrations in cultures of dissociated sympathetic neurons. J Neurosci. 1982 Nov;2(11):1554–1566. doi: 10.1523/JNEUROSCI.02-11-01554.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hempstead B. L., Martin-Zanca D., Kaplan D. R., Parada L. F., Chao M. V. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature. 1991 Apr 25;350(6320):678–683. doi: 10.1038/350678a0. [DOI] [PubMed] [Google Scholar]
  23. Hempstead B. L., Schleifer L. S., Chao M. V. Expression of functional nerve growth factor receptors after gene transfer. Science. 1989 Jan 20;243(4889):373–375. doi: 10.1126/science.2536190. [DOI] [PubMed] [Google Scholar]
  24. Hendry I. A., Campbell J. Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J Neurocytol. 1976 Jun;5(3):351–360. doi: 10.1007/BF01175120. [DOI] [PubMed] [Google Scholar]
  25. Hohn A., Leibrock J., Bailey K., Barde Y. A. Identification and characterization of a novel member of the nerve growth factor/brain-derived neurotrophic factor family. Nature. 1990 Mar 22;344(6264):339–341. doi: 10.1038/344339a0. [DOI] [PubMed] [Google Scholar]
  26. Hosang M., Shooter E. M. Molecular characteristics of nerve growth factor receptors on PC12 cells. J Biol Chem. 1985 Jan 10;260(1):655–662. [PubMed] [Google Scholar]
  27. Johnson D., Lanahan A., Buck C. R., Sehgal A., Morgan C., Mercer E., Bothwell M., Chao M. Expression and structure of the human NGF receptor. Cell. 1986 Nov 21;47(4):545–554. doi: 10.1016/0092-8674(86)90619-7. [DOI] [PubMed] [Google Scholar]
  28. Johnson E. M., Jr, Gorin P. D., Brandeis L. D., Pearson J. Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science. 1980 Nov 21;210(4472):916–918. doi: 10.1126/science.7192014. [DOI] [PubMed] [Google Scholar]
  29. Kaplan D. R., Hempstead B. L., Martin-Zanca D., Chao M. V., Parada L. F. The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science. 1991 Apr 26;252(5005):554–558. doi: 10.1126/science.1850549. [DOI] [PubMed] [Google Scholar]
  30. Kessler J. A., Black I. B. Nerve growth factor stimulates the development of substance P in sensory ganglia. Proc Natl Acad Sci U S A. 1980 Jan;77(1):649–652. doi: 10.1073/pnas.77.1.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Klein R., Jing S. Q., Nanduri V., O'Rourke E., Barbacid M. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell. 1991 Apr 5;65(1):189–197. doi: 10.1016/0092-8674(91)90419-y. [DOI] [PubMed] [Google Scholar]
  32. Leibrock J., Lottspeich F., Hohn A., Hofer M., Hengerer B., Masiakowski P., Thoenen H., Barde Y. A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature. 1989 Sep 14;341(6238):149–152. doi: 10.1038/341149a0. [DOI] [PubMed] [Google Scholar]
  33. Levi-Montalcini R., Booker B. EXCESSIVE GROWTH OF THE SYMPATHETIC GANGLIA EVOKED BY A PROTEIN ISOLATED FROM MOUSE SALIVARY GLANDS. Proc Natl Acad Sci U S A. 1960 Mar;46(3):373–384. doi: 10.1073/pnas.46.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Lewis E. J., Tank A. W., Weiner N., Chikaraishi D. M. Regulation of tyrosine hydroxylase mRNA by glucocorticoid and cyclic AMP in a rat pheochromocytoma cell line. Isolation of a cDNA clone for tyrosine hydroxylase mRNA. J Biol Chem. 1983 Dec 10;258(23):14632–14637. [PubMed] [Google Scholar]
  35. Lingappa J. R., Zigmond R. E. A histochemical study of the adrenergic innervation of the rat pineal gland: evidence for overlap of the innervation from the two superior cervical ganglia and for sprouting following unilateral denervation. Neuroscience. 1987 Jun;21(3):893–902. doi: 10.1016/0306-4522(87)90045-5. [DOI] [PubMed] [Google Scholar]
  36. Maisonpierre P. C., Belluscio L., Squinto S., Ip N. Y., Furth M. E., Lindsay R. M., Yancopoulos G. D. Neurotrophin-3: a neurotrophic factor related to NGF and BDNF. Science. 1990 Mar 23;247(4949 Pt 1):1446–1451. doi: 10.1126/science.247.4949.1446. [DOI] [PubMed] [Google Scholar]
  37. Martin-Zanca D., Oskam R., Mitra G., Copeland T., Barbacid M. Molecular and biochemical characterization of the human trk proto-oncogene. Mol Cell Biol. 1989 Jan;9(1):24–33. doi: 10.1128/mcb.9.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mathew T. C., Miller F. D. Increased expression of T alpha 1 alpha-tubulin mRNA during collateral and NGF-induced sprouting of sympathetic neurons. Dev Biol. 1990 Sep;141(1):84–92. doi: 10.1016/0012-1606(90)90103-p. [DOI] [PubMed] [Google Scholar]
  39. Meakin S. O., Shooter E. M. Molecular investigations on the high-affinity nerve growth factor receptor. Neuron. 1991 Jan;6(1):153–163. doi: 10.1016/0896-6273(91)90130-r. [DOI] [PubMed] [Google Scholar]
  40. Miller F. D., Mathew T. C., Toma J. G. Regulation of nerve growth factor receptor gene expression by nerve growth factor in the developing peripheral nervous system. J Cell Biol. 1991 Jan;112(2):303–312. doi: 10.1083/jcb.112.2.303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Miller F. D., Naus C. C., Durand M., Bloom F. E., Milner R. J. Isotypes of alpha-tubulin are differentially regulated during neuronal maturation. J Cell Biol. 1987 Dec;105(6 Pt 2):3065–3073. doi: 10.1083/jcb.105.6.3065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Mobley W. C., Schenker A., Shooter E. M. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry. 1976 Dec 14;15(25):5543–5552. doi: 10.1021/bi00670a019. [DOI] [PubMed] [Google Scholar]
  43. Murphy R. A., Chlumecky V., Smillie L. B., Carpenter M., Nattriss M., Anderson J. K., Rhodes J. A., Barker P. A., Siminoski K., Campenot R. B. Isolation and characterization of a glycosylated form of beta nerve growth factor in mouse submandibular glands. J Biol Chem. 1989 Jul 25;264(21):12502–12509. [PubMed] [Google Scholar]
  44. Otten U., Goedert M., Mayer N., Lembeck F. Requirement of nerve growth factor for development of substance P-containing sensory neurones. Nature. 1980 Sep 11;287(5778):158–159. doi: 10.1038/287158a0. [DOI] [PubMed] [Google Scholar]
  45. Pleasure S. J., Reddy U. R., Venkatakrishnan G., Roy A. K., Chen J., Ross A. H., Trojanowski J. Q., Pleasure D. E., Lee V. M. Introduction of nerve growth factor (NGF) receptors into a medulloblastoma cell line results in expression of high- and low-affinity NGF receptors but not NGF-mediated differentiation. Proc Natl Acad Sci U S A. 1990 Nov;87(21):8496–8500. doi: 10.1073/pnas.87.21.8496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Purves D., Snider W. D., Voyvodic J. T. Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature. 1988 Nov 10;336(6195):123–128. doi: 10.1038/336123a0. [DOI] [PubMed] [Google Scholar]
  47. Radeke M. J., Misko T. P., Hsu C., Herzenberg L. A., Shooter E. M. Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature. 1987 Feb 12;325(6105):593–597. doi: 10.1038/325593a0. [DOI] [PubMed] [Google Scholar]
  48. Rave N., Crkvenjakov R., Boedtker H. Identification of procollagen mRNAs transferred to diazobenzyloxymethyl paper from formaldehyde agarose gels. Nucleic Acids Res. 1979 Aug 10;6(11):3559–3567. doi: 10.1093/nar/6.11.3559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Raynaud B., Faucon-Biguet N., Vidal S., Mallet J., Weber M. J. Regulation of neurotransmitter metabolic enzymes and tyrosine hydroxylase mRNA level by nerve growth factor in cultured sympathetic neurones. Development. 1988 Feb;102(2):361–368. doi: 10.1242/dev.102.2.361. [DOI] [PubMed] [Google Scholar]
  50. Rodriguez-Tébar A., Dechant G., Barde Y. A. Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron. 1990 Apr;4(4):487–492. doi: 10.1016/0896-6273(90)90107-q. [DOI] [PubMed] [Google Scholar]
  51. Rohrer H., Otten U., Thoenen H. On the role of RNA synthesis in the selective induction of tyrosine hydroxylase by nerve growth factor. Brain Res. 1978 Dec 29;159(2):436–439. doi: 10.1016/0006-8993(78)90554-1. [DOI] [PubMed] [Google Scholar]
  52. Rosenthal A., Goeddel D. V., Nguyen T., Lewis M., Shih A., Laramee G. R., Nikolics K., Winslow J. W. Primary structure and biological activity of a novel human neurotrophic factor. Neuron. 1990 May;4(5):767–773. doi: 10.1016/0896-6273(90)90203-r. [DOI] [PubMed] [Google Scholar]
  53. Ruit K. G., Osborne P. A., Schmidt R. E., Johnson E. M., Jr, Snider W. D. Nerve growth factor regulates sympathetic ganglion cell morphology and survival in the adult mouse. J Neurosci. 1990 Jul;10(7):2412–2419. doi: 10.1523/JNEUROSCI.10-07-02412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Smith P. G., Reddy H., Venkataraman P. Sympathetic sprouting into neonatally denervated contralateral target: superior cervical ganglion neuronal numbers and sizes. Brain Res Dev Brain Res. 1990 May 1;53(2):208–214. doi: 10.1016/0165-3806(90)90008-m. [DOI] [PubMed] [Google Scholar]
  55. Snider W. D. Nerve growth factor enhances dendritic arborization of sympathetic ganglion cells in developing mammals. J Neurosci. 1988 Jul;8(7):2628–2634. doi: 10.1523/JNEUROSCI.08-07-02628.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Thoenen H., Angeletti P. U., Levi-Montalcini R., Kettler R. Selective induction by nerve growth factor of tyrosine hydroxylase and dopamine- -hydroxylase in the rat superior cervical ganglia. Proc Natl Acad Sci U S A. 1971 Jul;68(7):1598–1602. doi: 10.1073/pnas.68.7.1598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Wright L. L., Cunningham T. J., Smolen A. J. Developmental neuron death in the rat superior cervical sympathetic ganglion: cell counts and ultrastructure. J Neurocytol. 1983 Oct;12(5):727–738. doi: 10.1007/BF01258147. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES