Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Apr 1;117(1):57–72. doi: 10.1083/jcb.117.1.57

Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging

PMCID: PMC2289409  PMID: 1348251

Abstract

Intracellular movement of vesiculated pigment granules in angelfish melanophores is regulated by a signalling pathway that triggers kinesin and dyneinlike microtubule motor proteins. We have tested the relative importance of intracellular Ca2+ ([Ca2+]i) vs cAMP ([cAMP]i) in the control of such motility by adrenergic agonists, using fluorescence ratio imaging and many ways to artificially stimulate or suppress signals in these pathways. Fura-2 imaging reported a [Ca2+]i elevation accompanying pigment aggregation, but this increase was not essential since movement was not induced with the calcium ionophore, ionomycin, nor was movement blocked when the increases were suppressed by withdrawal of extracellular Ca2+ or loading of intracellular BAPTA. The phosphatase inhibitor, okadaic acid, blocked aggregation and induced dispersion at concentrations that suggested that the protein phosphatase PP-1 or PP-2A was continuously turning phosphate over during intracellular motility. cAMP was monitored dynamically in single living cells by microinjecting cAMP-dependent kinase in which the catalytic and regulatory subunits were labeled with fluorescein and rhodamine respectively (Adams et al., 1991. Nature (Lond.). 349:694- 697). Ratio imaging of F1CRhR showed that the alpha 2-adrenergic receptor-mediated aggregation was accompanied by a dose-dependent decrease in [cAMP]i. The decrease in [cAMP]i was both necessary and sufficient for aggregation, since cAMP analogs or microinjected free catalytic subunit of A kinase-blocked aggregation or caused dispersal, whereas the cAMP antagonist RpcAMPs or the microinjection of the specific kinase inhibitor PKI5-24 amide induced aggregation. Our conclusion that cAMP, not calcium, controls bidirectional microtubule dependent motility in melanophores might be relevant to other instances of non-muscle cell motility.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S. R., Harootunian A. T., Buechler Y. J., Taylor S. S., Tsien R. Y. Fluorescence ratio imaging of cyclic AMP in single cells. Nature. 1991 Feb 21;349(6311):694–697. doi: 10.1038/349694a0. [DOI] [PubMed] [Google Scholar]
  2. Allan V. J., Vale R. D. Cell cycle control of microtubule-based membrane transport and tubule formation in vitro. J Cell Biol. 1991 Apr;113(2):347–359. doi: 10.1083/jcb.113.2.347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen R. D., Metuzals J., Tasaki I., Brady S. T., Gilbert S. P. Fast axonal transport in squid giant axon. Science. 1982 Dec 10;218(4577):1127–1129. doi: 10.1126/science.6183744. [DOI] [PubMed] [Google Scholar]
  4. Beckerle M. C., Porter K. R. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature. 1982 Feb 25;295(5851):701–703. doi: 10.1038/295701a0. [DOI] [PubMed] [Google Scholar]
  5. Belmont L. D., Hyman A. A., Sawin K. E., Mitchison T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell. 1990 Aug 10;62(3):579–589. doi: 10.1016/0092-8674(90)90022-7. [DOI] [PubMed] [Google Scholar]
  6. Bialojan C., Takai A. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem J. 1988 Nov 15;256(1):283–290. doi: 10.1042/bj2560283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bomsel M., Parton R., Kuznetsov S. A., Schroer T. A., Gruenberg J. Microtubule- and motor-dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell. 1990 Aug 24;62(4):719–731. doi: 10.1016/0092-8674(90)90117-w. [DOI] [PubMed] [Google Scholar]
  8. Brown J. H., Goldstein D. Analysis of cardiac muscarinic receptors recognized selectively by nonquaternary but not by quaternary ligands. J Pharmacol Exp Ther. 1986 Aug;238(2):580–586. [PubMed] [Google Scholar]
  9. Cheng H. C., Kemp B. E., Pearson R. B., Smith A. J., Misconi L., Van Patten S. M., Walsh D. A. A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem. 1986 Jan 25;261(3):989–992. [PubMed] [Google Scholar]
  10. Chou S. C., Taylor J. D., Tchen T. T. Epinephrine-induced pigment aggregation in goldfish melanophoroma cells: apparent involvement of an unknown second messenger. Pigment Cell Res. 1989 Sep-Oct;2(5):414–420. doi: 10.1111/j.1600-0749.1989.tb00230.x. [DOI] [PubMed] [Google Scholar]
  11. Clark T. G., Rosenbaum J. L. Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4655–4659. doi: 10.1073/pnas.79.15.4655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cohen P., Holmes C. F., Tsukitani Y. Okadaic acid: a new probe for the study of cellular regulation. Trends Biochem Sci. 1990 Mar;15(3):98–102. doi: 10.1016/0968-0004(90)90192-e. [DOI] [PubMed] [Google Scholar]
  13. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  14. Cooper M. S., Cornell-Bell A. H., Chernjavsky A., Dani J. W., Smith S. J. Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-golgi elements into a reticulum. Cell. 1990 Apr 6;61(1):135–145. doi: 10.1016/0092-8674(90)90221-y. [DOI] [PubMed] [Google Scholar]
  15. Exton J. H. Mechanisms involved in alpha-adrenergic phenomena. Am J Physiol. 1985 Jun;248(6 Pt 1):E633–E647. doi: 10.1152/ajpendo.1985.248.6.E633. [DOI] [PubMed] [Google Scholar]
  16. Fujii R., Miyashita Y. Receptor mechanisms in fish chromatophores-I. Alpha nature of adrenoceptors mediating melanosome aggregation in guppy melanophores. Comp Biochem Physiol C. 1975 Aug 1;51(2):171–178. doi: 10.1016/0306-4492(75)90058-1. [DOI] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Hollenbeck P. J., Swanson J. A. Radial extension of macrophage tubular lysosomes supported by kinesin. Nature. 1990 Aug 30;346(6287):864–866. doi: 10.1038/346864a0. [DOI] [PubMed] [Google Scholar]
  19. Hughes R. J., Boyle M. R., Brown R. D., Taylor P., Insel P. A. Characterization of coexisting alpha 1- and beta 2-adrenergic receptors on a cloned muscle cell line, BC3H-1. Mol Pharmacol. 1982 Sep;22(2):258–266. [PubMed] [Google Scholar]
  20. Hyman A. A., Mitchison T. J. Two different microtubule-based motor activities with opposite polarities in kinetochores. Nature. 1991 May 16;351(6323):206–211. doi: 10.1038/351206a0. [DOI] [PubMed] [Google Scholar]
  21. Inagaki M., Kawamoto S., Itoh H., Saitoh M., Hagiwara M., Takahashi J., Hidaka H. Naphthalenesulfonamides as calmodulin antagonists and protein kinase inhibitors. Mol Pharmacol. 1986 Jun;29(6):577–581. [PubMed] [Google Scholar]
  22. Izant J. G. The role of calcium ions during mitosis. Calcium participates in the anaphase trigger. Chromosoma. 1983;88(1):1–10. doi: 10.1007/BF00329497. [DOI] [PubMed] [Google Scholar]
  23. Jurgensen S. R., Chock P. B., Taylor S., Vandenheede J. R., Merlevede W. Inhibition of the Mg(II).ATP-dependent phosphoprotein phosphatase by the regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7565–7569. doi: 10.1073/pnas.82.22.7565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kao J. P., Alderton J. M., Tsien R. Y., Steinhardt R. A. Active involvement of Ca2+ in mitotic progression of Swiss 3T3 fibroblasts. J Cell Biol. 1990 Jul;111(1):183–196. doi: 10.1083/jcb.111.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kumazawa T., Fujii R. Concurrent releases of norepinephrine and purines by potassium from adrenergic melanosome-aggregating nerve in Tilapia. Comp Biochem Physiol C. 1984;78(2):263–266. doi: 10.1016/0742-8413(84)90080-x. [DOI] [PubMed] [Google Scholar]
  26. Lerner M. R., Reagan J., Gyorgyi T., Roby A. Olfaction by melanophores: what does it mean? Proc Natl Acad Sci U S A. 1988 Jan;85(1):261–264. doi: 10.1073/pnas.85.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Limbird L. E. Receptors linked to inhibition of adenylate cyclase: additional signaling mechanisms. FASEB J. 1988 Aug;2(11):2686–2695. doi: 10.1096/fasebj.2.11.2840317. [DOI] [PubMed] [Google Scholar]
  28. Luby-Phelps K., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium. Cell. 1982 Jun;29(2):441–450. doi: 10.1016/0092-8674(82)90160-x. [DOI] [PubMed] [Google Scholar]
  29. Lynch T. J., Wu B. Y., Taylor J. D., Tchen T. T. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase. J Biol Chem. 1986 Mar 25;261(9):4212–4216. [PubMed] [Google Scholar]
  30. McIntosh J. R., Porter M. E. Enzymes for microtubule-dependent motility. J Biol Chem. 1989 Apr 15;264(11):6001–6004. [PubMed] [Google Scholar]
  31. McNiven M. A., Wang M., Porter K. R. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell. 1984 Jul;37(3):753–765. doi: 10.1016/0092-8674(84)90411-2. [DOI] [PubMed] [Google Scholar]
  32. McNiven M. A., Ward J. B. Calcium regulation of pigment transport in vitro. J Cell Biol. 1988 Jan;106(1):111–125. doi: 10.1083/jcb.106.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Michel M. C., Brass L. F., Williams A., Bokoch G. M., LaMorte V. J., Motulsky H. J. Alpha 2-adrenergic receptor stimulation mobilizes intracellular Ca2+ in human erythroleukemia cells. J Biol Chem. 1989 Mar 25;264(9):4986–4991. [PubMed] [Google Scholar]
  34. Miller P., Walter U., Theurkauf W. E., Vallee R. B., De Camilli P. Frozen tissue sections as an experimental system to reveal specific binding sites for the regulatory subunit of type II cAMP-dependent protein kinase in neurons. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5562–5566. doi: 10.1073/pnas.79.18.5562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Miyashita Y., Fujii R. Receptor mechanisms in fish chromatophores-II. Evidence for beta adrenoceptors mediating melanosome dispersion in guppy melanophores. Comp Biochem Physiol C. 1975 Aug 1;51(2):179–187. doi: 10.1016/0306-4492(75)90059-3. [DOI] [PubMed] [Google Scholar]
  36. Murphy D. B., Tilney L. G. The role of microtubules in the movement of pigment granules in teleost melanophores. J Cell Biol. 1974 Jun;61(3):757–779. doi: 10.1083/jcb.61.3.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Novales R. R., Fujii R. A melanin-dispersing effect of cyclic adenosine monophosphate on Fundulus melanophores. J Cell Physiol. 1970 Feb;75(1):133–135. doi: 10.1002/jcp.1040750116. [DOI] [PubMed] [Google Scholar]
  38. Ogawa K., Hosoya H., Yokota E., Kobayashi T., Wakamatsu Y., Ozato K., Negishi S., Obika M. Melanoma dynein: evidence that dynein is a general "motor" for microtubule-associated cell motilities. Eur J Cell Biol. 1987 Feb;43(1):3–9. [PubMed] [Google Scholar]
  39. Palazzo R. E., Lynch T. J., Taylor J. D., Tchen T. T. cAMP-independent and cAMP-dependent protein phosphorylations by isolated goldfish xanthophore cytoskeletons: evidence for the association of cytoskeleton with a carotenoid droplet protein. Cell Motil Cytoskeleton. 1989;13(1):21–29. doi: 10.1002/cm.970130104. [DOI] [PubMed] [Google Scholar]
  40. Paschal B. M., King S. M., Moss A. G., Collins C. A., Vallee R. B., Witman G. B. Isolated flagellar outer arm dynein translocates brain microtubules in vitro. Nature. 1987 Dec 17;330(6149):672–674. doi: 10.1038/330672a0. [DOI] [PubMed] [Google Scholar]
  41. Poenie M. Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium. 1990 Feb-Mar;11(2-3):85–91. doi: 10.1016/0143-4160(90)90062-y. [DOI] [PubMed] [Google Scholar]
  42. Rangel-Aldao R., Rosen O. M. Effect of cAMP and ATP on the reassociation of phosphorylated and nonphosphorylated subunits of the cAMP-dependent protein kinase from bovine cardiac muscle. J Biol Chem. 1977 Oct 25;252(20):7140–7145. [PubMed] [Google Scholar]
  43. Rivas R. J., Moore H. P. Spatial segregation of the regulated and constitutive secretory pathways. J Cell Biol. 1989 Jul;109(1):51–60. doi: 10.1083/jcb.109.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Rodionov V. I., Gyoeva F. K., Gelfand V. I. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4956–4960. doi: 10.1073/pnas.88.11.4956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Rozdzial M. M., Haimo L. T. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell. 1986 Dec 26;47(6):1061–1070. doi: 10.1016/0092-8674(86)90821-4. [DOI] [PubMed] [Google Scholar]
  46. SCHELINE R. R. ADRENERGIC MECHANISMS IN FISH: CHROMATOPHORE PIGMENT CONCENTRATION IN THE CUCKOO WRASSE, LABRUS OSSIFAGUS L. Comp Biochem Physiol. 1963 Jul;9:215–227. doi: 10.1016/0010-406x(63)90045-8. [DOI] [PubMed] [Google Scholar]
  47. Sammak P. J., Borisy G. G. Direct observation of microtubule dynamics in living cells. Nature. 1988 Apr 21;332(6166):724–726. doi: 10.1038/332724a0. [DOI] [PubMed] [Google Scholar]
  48. Schliwa M., Bereiter-Hahn J. Pigment movements in fish melanophores: morphological and physiological studies. 3. The effects of colchicine and vinblastine. Z Zellforsch Mikrosk Anat. 1973 Dec 31;147(1):127–148. doi: 10.1007/BF00306604. [DOI] [PubMed] [Google Scholar]
  49. Schliwa M., Bereiter-Hahn J. Pigment movements in fish melanophores: morphological and physiological studies. V. Evidence for a microtubule-independent contractile system. Cell Tissue Res. 1975;158(1):61–73. doi: 10.1007/BF00219951. [DOI] [PubMed] [Google Scholar]
  50. Schliwa M., Euteneuer U., Bulinski J. C., Izant J. G. Calcium lability of cytoplasmic microtubules and its modulation by microtubule-associated proteins. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1037–1041. doi: 10.1073/pnas.78.2.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schliwa M., Euteneuer U., Herzog W., Weber K. Evidence for rapid structural and functional changes of the melanophore microtubule-organizing center upon pigment movements. J Cell Biol. 1979 Dec;83(3):623–632. doi: 10.1083/jcb.83.3.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schliwa M., Weber K., Porter K. R. Localization and organization of actin in melanophores. J Cell Biol. 1981 May;89(2):267–275. doi: 10.1083/jcb.89.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Tash J. S. Protein phosphorylation: the second messenger signal transducer of flagellar motility. Cell Motil Cytoskeleton. 1989;14(3):332–339. doi: 10.1002/cm.970140303. [DOI] [PubMed] [Google Scholar]
  54. Terasaki M. Recent progress on structural interactions of the endoplasmic reticulum. Cell Motil Cytoskeleton. 1990;15(2):71–75. doi: 10.1002/cm.970150203. [DOI] [PubMed] [Google Scholar]
  55. Thaler C. D., Haimo L. T. Regulation of organelle transport in melanophores by calcineurin. J Cell Biol. 1990 Nov;111(5 Pt 1):1939–1948. doi: 10.1083/jcb.111.5.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Tombes R. M., Borisy G. G. Intracellular free calcium and mitosis in mammalian cells: anaphase onset is calcium modulated, but is not triggered by a brief transient. J Cell Biol. 1989 Aug;109(2):627–636. doi: 10.1083/jcb.109.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Tsien R. Y., Harootunian A. T. Practical design criteria for a dynamic ratio imaging system. Cell Calcium. 1990 Feb-Mar;11(2-3):93–109. doi: 10.1016/0143-4160(90)90063-z. [DOI] [PubMed] [Google Scholar]
  58. Tsien R., Pozzan T. Measurement of cytosolic free Ca2+ with quin2. Methods Enzymol. 1989;172:230–262. doi: 10.1016/s0076-6879(89)72017-6. [DOI] [PubMed] [Google Scholar]
  59. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Verde F., Labbé J. C., Dorée M., Karsenti E. Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature. 1990 Jan 18;343(6255):233–238. doi: 10.1038/343233a0. [DOI] [PubMed] [Google Scholar]
  61. Winchester J. D., Ngo F., Tchen T. T., Taylor J. D. Hormone-induced dispersion or aggregation of carotenoid-containing smooth endoplasmic reticulum in cultured xanthophores from the goldfish, Carrassius auratus L. Endocr Res Commun. 1976;3(5):335–342. doi: 10.1080/07435807609052937. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES