Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Apr 2;117(2):383–393. doi: 10.1083/jcb.117.2.383

A mechanism generating heterogeneity in thyroid epithelial cells: suppression of the thyrotropin/cAMP-dependent mitogenic pathway after cell division induced by cAMP-independent factors

PMCID: PMC2289413  PMID: 1313816

Abstract

The mechanisms that generate the intercellular heterogeneity of functional and proliferation responses in a tissue are generally unknown. In the thyroid gland, this heterogeneity is peculiarly marked and it has been proposed that it could result from the coexistence of genetically different subpopulations of thyrocytes. To evaluate the heterogeneity of proliferative responses in primary culture of dog thyrocytes, we asked whether the progeny of cells having incorporated 3H thymidine in a first period of the culture could have a distinct proliferative fate during a second labeling period (incorporation of bromodeoxyuridine revealed by immunofluorescence staining combined with autoradiography of 3H thymidine). No growth-prone subpopulations were detected and the great majority of cells were found to response to either EGF or thyrotropin (TSH) through cAMP. However, only a fraction of cells replicated DNA at one given period and a clustered distribution of labeled cells within the monolayer, which was different for thymidine- or bromodeoxyuridine-labeled cells, indicates some local and temporal synchrony of neighboring cells. The TSH/cAMP-dependent division of thyrocytes preserved their responsiveness to both TSH and EGF mitogenic pathways. By contrast, cells that had divided during a momentary treatment with EGF lost the mitogenic sensitivity to TSH and cAMP (forskolin) but retained the sensitivity to EGF. Since cells that had not divided kept responsiveness to both TSH and EGF, this generated two subpopulations differing in mitogen responsiveness. The extinction of the TSH/cAMP-dependent mitogenic pathway was delayed (1-2 d) but stable. Cell fusion experiments suggest it was due to the induction of a diffusible intracellular inhibitor of the cAMP-dependent growth pathway. These findings provide a useful model of the generation of a qualitative heterogeneity in the cell sensitivity to various mitogens, which presents analogies with other epigenetic processes, such as differentiation and senescence. They shed a new light on the significance of the coexistence of different modes of cell cycle controls in thyroid epithelial cells.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adlakha R. C., Sahasrabuddhe C. G., Wright D. A., Rao P. N. Evidence for the presence of inhibitors of mitotic factors during G1 period in mammalian cells. J Cell Biol. 1983 Dec;97(6):1707–1713. doi: 10.1083/jcb.97.6.1707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bell E., Marek L. F., Levinstone D. S., Merrill C., Sher S., Young I. T., Eden M. Loss of division potential in vitro: aging or differentiation? Science. 1978 Dec 15;202(4373):1158–1163. doi: 10.1126/science.725592. [DOI] [PubMed] [Google Scholar]
  3. Boshart M., Weih F., Schmidt A., Fournier R. E., Schütz G. A cyclic AMP response element mediates repression of tyrosine aminotransferase gene transcription by the tissue-specific extinguisher locus Tse-1. Cell. 1990 Jun 1;61(5):905–916. doi: 10.1016/0092-8674(90)90201-o. [DOI] [PubMed] [Google Scholar]
  4. Brooks R. F., Richmond F. N., Riddle P. N., Richmond K. M. Apparent heterogeneity in the response of quiescent swiss 3T3 cells to serum growth factors: implications for the transition probability model and parallels with "cellular senescence" and "competence". J Cell Physiol. 1984 Nov;121(2):341–350. doi: 10.1002/jcp.1041210211. [DOI] [PubMed] [Google Scholar]
  5. Chin A. C., Fournier R. E. A genetic analysis of extinction: trans-regulation of 16 liver-specific genes in hepatoma-fibroblast hybrid cells. Proc Natl Acad Sci U S A. 1987 Mar;84(6):1614–1618. doi: 10.1073/pnas.84.6.1614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coclet J., Foureau F., Ketelbant P., Galand P., Dumont J. E. Cell population kinetics in dog and human adult thyroid. Clin Endocrinol (Oxf) 1989 Dec;31(6):655–665. doi: 10.1111/j.1365-2265.1989.tb01290.x. [DOI] [PubMed] [Google Scholar]
  7. Coclet J., Lamy F., Rickaert F., Dumont J. E., Roger P. P. Intermediate filaments in normal thyrocytes: modulation of vimentin expression in primary cultures. Mol Cell Endocrinol. 1991 Apr;76(1-3):135–148. doi: 10.1016/0303-7207(91)90268-w. [DOI] [PubMed] [Google Scholar]
  8. Contor L., Lamy F., Lecocq R., Roger P. P., Dumont J. E. Differential protein phosphorylation in induction of thyroid cell proliferation by thyrotropin, epidermal growth factor, or phorbol ester. Mol Cell Biol. 1988 Jun;8(6):2494–2503. doi: 10.1128/mcb.8.6.2494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denef J. F., Ovaert C., Many M. C. La goitrigenèse expérimentale. Ann Endocrinol (Paris) 1989;50(1):1–15. [PubMed] [Google Scholar]
  10. Derwahl M., Studer H., Huber G., Gerber H., Peter H. J. Intercellular propagation of individually programmed growth bursts in FRTL-5 cells. Implications for interpreting growth factor actions. Endocrinology. 1990 Nov;127(5):2104–2110. doi: 10.1210/endo-127-5-2104. [DOI] [PubMed] [Google Scholar]
  11. Dumont J. E., Jauniaux J. C., Roger P. P. The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci. 1989 Feb;14(2):67–71. doi: 10.1016/0968-0004(89)90046-7. [DOI] [PubMed] [Google Scholar]
  12. Dumont J. E. The action of thyrotropin on thyroid metabolism. Vitam Horm. 1971;29:287–412. doi: 10.1016/s0083-6729(08)60051-5. [DOI] [PubMed] [Google Scholar]
  13. Grundel R., Rubin H. Maintenance of multiplication rate stability by cell populations in the face of heterogeneity among individual cells. J Cell Sci. 1988 Dec;91(Pt 4):571–576. doi: 10.1242/jcs.91.4.571. [DOI] [PubMed] [Google Scholar]
  14. Hall P. A., Watt F. M. Stem cells: the generation and maintenance of cellular diversity. Development. 1989 Aug;106(4):619–633. doi: 10.1242/dev.106.4.619. [DOI] [PubMed] [Google Scholar]
  15. Harris H. The role of differentiation in the suppression of malignancy. J Cell Sci. 1990 Sep;97(Pt 1):5–10. doi: 10.1242/jcs.97.1.5. [DOI] [PubMed] [Google Scholar]
  16. Huber G., Derwahl M., Kaempf J., Peter H. J., Gerber H., Studer H. Generation of intercellular heterogeneity of growth and function in cloned rat thyroid cells (FRTL-5). Endocrinology. 1990 Mar;126(3):1639–1645. doi: 10.1210/endo-126-3-1639. [DOI] [PubMed] [Google Scholar]
  17. Killary A. M., Fournier R. E. A genetic analysis of extinction: trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells. Cell. 1984 Sep;38(2):523–534. doi: 10.1016/0092-8674(84)90507-5. [DOI] [PubMed] [Google Scholar]
  18. Kuri-Harcuch W., Marsch-Moreno M. DNA synthesis and cell division related to adipose differentiation of 3T3 cells. J Cell Physiol. 1983 Jan;114(1):39–44. doi: 10.1002/jcp.1041140107. [DOI] [PubMed] [Google Scholar]
  19. Lajtha L. G. Stem cell concepts. Differentiation. 1979;14(1-2):23–34. doi: 10.1111/j.1432-0436.1979.tb01007.x. [DOI] [PubMed] [Google Scholar]
  20. Lamy F., Roger P., Lecocq R., Dumont J. E. Protein synthesis during induction of DNA replication in thyroid epithelial cells: evidence for late markers of distinct mitogenic pathways. J Cell Physiol. 1989 Mar;138(3):568–578. doi: 10.1002/jcp.1041380318. [DOI] [PubMed] [Google Scholar]
  21. Levine A. J., Momand J. Tumor suppressor genes: the p53 and retinoblastoma sensitivity genes and gene products. Biochim Biophys Acta. 1990 Jun 1;1032(1):119–136. doi: 10.1016/0304-419x(90)90015-s. [DOI] [PubMed] [Google Scholar]
  22. Maenhaut C., Roger P. P., Reuse S., Dumont J. E. Activation of the cyclic AMP cascade as an oncogenic mechanism: the thyroid example. Biochimie. 1991 Jan;73(1):29–36. doi: 10.1016/0300-9084(91)90070-h. [DOI] [PubMed] [Google Scholar]
  23. Many M. C., Denef J. F., Hamudi S., Haumont S. Increased follicular heterogeneity in experimental colloid goiter produced by refeeding iodine excess after thyroid hyperplasia. Endocrinology. 1986 Feb;118(2):637–644. doi: 10.1210/endo-118-2-637. [DOI] [PubMed] [Google Scholar]
  24. Matsumura T. Sequence of cell life phases in a finitely proliferative population of cultured rat cells: a genealogical study. J Cell Physiol. 1984 May;119(2):145–154. doi: 10.1002/jcp.1041190202. [DOI] [PubMed] [Google Scholar]
  25. Mestdagh C., Many M. C., Halpern S., Briançon C., Fragu P., Denef J. F. Correlated autoradiographic and ion-microscopic study of the role of iodine in the formation of "cold" follicles in young and old mice. Cell Tissue Res. 1990 May;260(3):449–457. doi: 10.1007/BF00297224. [DOI] [PubMed] [Google Scholar]
  26. Munari-Silem Y., Mesnil M., Selmi S., Bernier-Valentin F., Rabilloud R., Rousset B. Cell-cell interactions in the process of differentiation of thyroid epithelial cells into follicles: a study by microinjection and fluorescence microscopy on in vitro reconstituted thyroid follicles. J Cell Physiol. 1990 Dec;145(3):414–427. doi: 10.1002/jcp.1041450305. [DOI] [PubMed] [Google Scholar]
  27. Namba H., Matsuo K., Fagin J. A. Clonal composition of benign and malignant human thyroid tumors. J Clin Invest. 1990 Jul;86(1):120–125. doi: 10.1172/JCI114673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Pereira-Smith O. M., Smith J. R. Genetic analysis of indefinite division in human cells: identification of four complementation groups. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6042–6046. doi: 10.1073/pnas.85.16.6042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Peter H. J., Gerber H., Studer H., Smeds S. Pathogenesis of heterogeneity in human multinodular goiter. A study on growth and function of thyroid tissue transplanted onto nude mice. J Clin Invest. 1985 Nov;76(5):1992–2002. doi: 10.1172/JCI112199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pohl V., Roger P. P., Christophe D., Pattyn G., Vassart G., Dumont J. E. Differentiation expression during proliferative activity induced through different pathways: in situ hybridization study of thyroglobulin gene expression in thyroid epithelial cells. J Cell Biol. 1990 Aug;111(2):663–672. doi: 10.1083/jcb.111.2.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Potten C. S., Loeffler M. Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development. 1990 Dec;110(4):1001–1020. doi: 10.1242/dev.110.4.1001. [DOI] [PubMed] [Google Scholar]
  32. Reuse S., Maenhaut C., Dumont J. E. Regulation of protooncogenes c-fos and c-myc expressions by protein tyrosine kinase, protein kinase C, and cyclic AMP mitogenic pathways in dog primary thyrocytes: a positive and negative control by cyclic AMP on c-myc expression. Exp Cell Res. 1990 Jul;189(1):33–40. doi: 10.1016/0014-4827(90)90253-7. [DOI] [PubMed] [Google Scholar]
  33. Reuse S., Pirson I., Dumont J. E. Differential regulation of protooncogenes c-jun and jun D expressions by protein tyrosine kinase, protein kinase C, and cyclic-AMP mitogenic pathways in dog primary thyrocytes: TSH and cyclic-AMP induce proliferation but downregulate C-jun expression. Exp Cell Res. 1991 Oct;196(2):210–215. doi: 10.1016/0014-4827(91)90253-q. [DOI] [PubMed] [Google Scholar]
  34. Roger P. P., Dumont J. E. Factors controlling proliferation and differentiation of canine thyroid cells cultured in reduced serum conditions: effects of thyrotropin, cyclic AMP and growth factors. Mol Cell Endocrinol. 1984 Jun;36(1-2):79–93. doi: 10.1016/0303-7207(84)90087-x. [DOI] [PubMed] [Google Scholar]
  35. Roger P. P., Hotimsky A., Moreau C., Dumont J. E. Stimulation by thyrotropin, cholera toxin and dibutyryl cyclic AMP of the multiplication of differentiated thyroid cells in vitro. Mol Cell Endocrinol. 1982 Apr;26(1-2):165–176. doi: 10.1016/0303-7207(82)90014-4. [DOI] [PubMed] [Google Scholar]
  36. Roger P. P., Reuse S., Servais P., Van Heuverswyn B., Dumont J. E. Stimulation of cell proliferation and inhibition of differentiation expression by tumor-promoting phorbol esters in dog thyroid cells in primary culture. Cancer Res. 1986 Feb;46(2):898–906. [PubMed] [Google Scholar]
  37. Roger P. P., Servais P., Dumont J. E. Induction of DNA synthesis in dog thyrocytes in primary culture: synergistic effects of thyrotropin and cyclic AMP with epidermal growth factor and insulin. J Cell Physiol. 1987 Jan;130(1):58–67. doi: 10.1002/jcp.1041300110. [DOI] [PubMed] [Google Scholar]
  38. Roger P. P., Servais P., Dumont J. E. Regulation of dog thyroid epithelial cell cycle by forskolin, an adenylate cyclase activator. Exp Cell Res. 1987 Oct;172(2):282–292. doi: 10.1016/0014-4827(87)90387-9. [DOI] [PubMed] [Google Scholar]
  39. Roger P. P., Van Heuverswyn B., Lambert C., Reuse S., Vassart G., Dumont J. E. Antagonistic effects of thyrotropin and epidermal growth factor on thyroglobulin mRNA level in cultured thyroid cells. Eur J Biochem. 1985 Oct 15;152(2):239–245. doi: 10.1111/j.1432-1033.1985.tb09189.x. [DOI] [PubMed] [Google Scholar]
  40. Smith J. R., Whitney R. G. Intraclonal variation in proliferative potential of human diploid fibroblasts: stochastic mechanism for cellular aging. Science. 1980 Jan 4;207(4426):82–84. doi: 10.1126/science.7350644. [DOI] [PubMed] [Google Scholar]
  41. Smith P., Williams E. D., Wynford-Thomas D. In vitro demonstration of a TSH-specific growth desensitising mechanism in rat thyroid epithelium. Mol Cell Endocrinol. 1987 May;51(1-2):51–58. doi: 10.1016/0303-7207(87)90118-3. [DOI] [PubMed] [Google Scholar]
  42. Stein G. H., Yanishevsky R. M. Quiescent human diploid cells can inhibit entry into S phase in replicative nuclei in heterodikaryons. Proc Natl Acad Sci U S A. 1981 May;78(5):3025–3029. doi: 10.1073/pnas.78.5.3025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Studer H., Peter H. J., Gerber H. Natural heterogeneity of thyroid cells: the basis for understanding thyroid function and nodular goiter growth. Endocr Rev. 1989 May;10(2):125–135. doi: 10.1210/edrv-10-2-125. [DOI] [PubMed] [Google Scholar]
  44. Thayer M. J., Weintraub H. Activation and repression of myogenesis in somatic cell hybrids: evidence for trans-negative regulation of MyoD in primary fibroblasts. Cell. 1990 Oct 5;63(1):23–32. doi: 10.1016/0092-8674(90)90285-m. [DOI] [PubMed] [Google Scholar]
  45. Thomas G. A., Williams D., Williams E. D. The clonal origin of thyroid nodules and adenomas. Am J Pathol. 1989 Jan;134(1):141–147. [PMC free article] [PubMed] [Google Scholar]
  46. Veneziani B. M., Villone G., Romano R., Di Carlo A., Garbi C., Tramontano D. The tissue-specific pathways regulating cell proliferation are inherited independently in somatic hybrid between thyroid and liver cells. J Cell Biol. 1990 Dec;111(6 Pt 1):2703–2711. doi: 10.1083/jcb.111.6.2703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Weinberg R. A. The retinoblastoma gene and cell growth control. Trends Biochem Sci. 1990 May;15(5):199–202. doi: 10.1016/0968-0004(90)90162-5. [DOI] [PubMed] [Google Scholar]
  48. Wynford-Thomas D., Stringer B. M., Harach H. R., Williams E. D. Control of growth in the rat thyroid--an example of specific desensitization to trophic hormone stimulation. Experientia. 1983 Apr 15;39(4):421–423. doi: 10.1007/BF01963160. [DOI] [PubMed] [Google Scholar]
  49. Yamada T. Cell type expression mediated by cell cycle events, and signaled by mitogens and growth inhibitors. Int Rev Cytol. 1989;117:215–255. doi: 10.1016/s0074-7696(08)61338-8. [DOI] [PubMed] [Google Scholar]
  50. Yap A. S., Bourke J. R., Manley S. W. Role of cell-cell contact in the preservation of differentiation and response to thyrotrophin in cultured porcine thyroid cells. J Endocrinol. 1987 May;113(2):223–229. doi: 10.1677/joe.0.1130223. [DOI] [PubMed] [Google Scholar]
  51. Zelenin A. V., Prudovsky I. A. Regulation of DNA synthesis investigated in heterokaryons of dividing and nondividing cells. Int Rev Cytol. 1989;117:179–214. doi: 10.1016/s0074-7696(08)61337-6. [DOI] [PubMed] [Google Scholar]
  52. Zurzolo C., Gentile R., Mascia A., Garbi C., Polistina C., Aloj L., Avvedimento V. E., Nitsch L. The polarized epithelial phenotype is dominant in hybrids between polarized and unpolarized rat thyroid cell lines. J Cell Sci. 1991 Jan;98(Pt 1):65–73. doi: 10.1242/jcs.98.1.65. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES