Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Apr 2;117(2):427–435. doi: 10.1083/jcb.117.2.427

Hypertrophic chondrocytes undergo further differentiation in culture

PMCID: PMC2289422  PMID: 1560033

Abstract

Conditions have been defined for promoting growth and differentiation of hypertrophic chondrocytes obtained in culture starting from chick embryo tibiae. Hypertrophic chondrocytes, grown in suspension culture as described (Castagnola P., G. Moro, F. Descalzi Cancedda, and R. Cancedda. 1986. J. Cell Biol. 102:2310-2317), when they reached the stage of single cells, were transferred to substrate-dependent culture conditions in the presence of ascorbic acid. Cells showed a change in morphology, became more elongated and flattened, expressed alkaline phosphatase, and eventually mineralized. Type II and X collagen synthesis was halted and replaced by type I collagen synthesis. In addition the cells started to produce and to secrete in large amount a protein with an apparent molecular mass of 82 KD in reducing conditions and 63 KD in unreducing conditions. This protein is soluble in acidic solutions, does not contain collagenous domains, and is glycosylated. The Ch21 protein, a marker of hypertrophic chondrocytes and bone cells, was synthesized throughout the culture. We have defined this additional differentiation stage as an osteoblast-like stage. Calcium deposition in the extracellular matrix occurred regardless of the addition of beta glycerophosphate to the culture medium. Comparable results were obtained both when the cells were plated at low density and when they were already at confluence and maintained in culture without passaging up to 50 d. When retinoic acid was added to the hypertrophic chondrocyte culture between day 1 and day 5 the maturation of the cells to the osteoblast-like stage was highly accelerated. The switch in the collagen secretion was already observed after 2 d and the production of the 63-kD protein after 3 d. Mineralization was observed after 15-20 d.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benya P. D., Padilla S. R. Modulation of the rabbit chondrocyte phenotype by retinoic acid terminates type II collagen synthesis without inducing type I collagen: the modulated phenotype differs from that produced by subculture. Dev Biol. 1986 Nov;118(1):296–305. doi: 10.1016/0012-1606(86)90096-5. [DOI] [PubMed] [Google Scholar]
  3. Bonatti S., Cancedda F. D. Posttranslational modifications of Sindbis virus glycoproteins: electrophoretic analysis of pulse-chase-labeled infected cells. J Virol. 1982 Apr;42(1):64–70. doi: 10.1128/jvi.42.1.64-70.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bruckner P., Hörler I., Mendler M., Houze Y., Winterhalter K. H., Eich-Bender S. G., Spycher M. A. Induction and prevention of chondrocyte hypertrophy in culture. J Cell Biol. 1989 Nov;109(5):2537–2545. doi: 10.1083/jcb.109.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cancedda F. D., Dozin B., Rossi F., Molina F., Cancedda R., Negri A., Ronchi S. The Ch21 protein, developmentally regulated in chick embryo, belongs to the superfamily of lipophilic molecule carrier proteins. J Biol Chem. 1990 Nov 5;265(31):19060–19064. [PubMed] [Google Scholar]
  6. Capasso O., Tajana G., Cancedda R. Location of 64K collagen producer chondrocytes in developing chicken embryo tibiae. Mol Cell Biol. 1984 Jun;4(6):1163–1168. doi: 10.1128/mcb.4.6.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castagnola P., Moro G., Descalzi-Cancedda F., Cancedda R. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986 Jun;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Castagnola P., Torella G., Cancedda R. Type X collagen synthesis by cultured chondrocytes derived from the permanent cartilaginous region of chick embryo sternum. Dev Biol. 1987 Oct;123(2):332–337. doi: 10.1016/0012-1606(87)90391-5. [DOI] [PubMed] [Google Scholar]
  10. Descalzi Cancedda F., Manduca P., Tacchetti C., Fossa P., Quarto R., Cancedda R. Developmentally regulated synthesis of a low molecular weight protein (Ch 21) by differentiating chondrocytes. J Cell Biol. 1988 Dec;107(6 Pt 1):2455–2463. doi: 10.1083/jcb.107.6.2455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eichele G., Thaller C. Characterization of concentration gradients of a morphogenetically active retinoid in the chick limb bud. J Cell Biol. 1987 Oct;105(4):1917–1923. doi: 10.1083/jcb.105.4.1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gerstenfeld L. C., Landis W. J. Gene expression and extracellular matrix ultrastructure of a mineralizing chondrocyte cell culture system. J Cell Biol. 1991 Feb;112(3):501–513. doi: 10.1083/jcb.112.3.501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Giaretti W., Moro G., Quarto R., Bruno S., Di Vinci A., Geido E., Cancedda R. Flow cytometric evaluation of cell cycle characteristics during in vitro differentiation of chick embryo chondrocytes. Cytometry. 1988 Jul;9(4):281–290. doi: 10.1002/cyto.990090403. [DOI] [PubMed] [Google Scholar]
  14. Gibson G. J., Schor S. L., Grant M. E. Effects of matrix macromolecules on chondrocyte gene expression: synthesis of a low molecular weight collagen species by cells cultured within collagen gels. J Cell Biol. 1982 Jun;93(3):767–774. doi: 10.1083/jcb.93.3.767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hassell J. R., Horigan E. A., Mosley G. L., Ledbetter S. R., Kleinman H. K., Chandrasekhar S. Appearance of basement membrane components during the differentiation of limb bud mesenchyme cells in culture. Prog Clin Biol Res. 1985;171:75–86. [PubMed] [Google Scholar]
  16. Hassell J. R., Pennypacker J. P., Lewis C. A. Chondrogenesis and cell proliferation in limb bud cell cultures treated with cytosine arabinoside and vitamin A. Exp Cell Res. 1978 Mar 15;112(2):409–417. doi: 10.1016/0014-4827(78)90223-9. [DOI] [PubMed] [Google Scholar]
  17. Horton W. E., Yamada Y., Hassell J. R. Retinoic acid rapidly reduces cartilage matrix synthesis by altering gene transcription in chondrocytes. Dev Biol. 1987 Oct;123(2):508–516. doi: 10.1016/0012-1606(87)90409-x. [DOI] [PubMed] [Google Scholar]
  18. Horton W., Hassell J. R. Independence of cell shape and loss of cartilage matrix production during retinoic acid treatment of cultured chondrocytes. Dev Biol. 1986 Jun;115(2):392–397. doi: 10.1016/0012-1606(86)90258-7. [DOI] [PubMed] [Google Scholar]
  19. Kochhar D. M. Teratogenic activity of retinoic acid. Acta Pathol Microbiol Scand. 1967;70(3):398–404. doi: 10.1111/j.1699-0463.1967.tb01308.x. [DOI] [PubMed] [Google Scholar]
  20. Manduca P., Descalzi Cancedda F., Tacchetti C., Quarto R., Fossa P., Cancedda R. Synthesis and secretion of Ch 21 protein in embryonic chick skeletal tissues. Eur J Cell Biol. 1989 Oct;50(1):154–161. [PubMed] [Google Scholar]
  21. Noji S., Nohno T., Koyama E., Muto K., Ohyama K., Aoki Y., Tamura K., Ohsugi K., Ide H., Taniguchi S. Retinoic acid induces polarizing activity but is unlikely to be a morphogen in the chick limb bud. Nature. 1991 Mar 7;350(6313):83–86. doi: 10.1038/350083a0. [DOI] [PubMed] [Google Scholar]
  22. Oettinger H. F., Pacifici M. Type X collagen gene expression is transiently up-regulated by retinoic acid treatment in chick chondrocyte cultures. Exp Cell Res. 1990 Dec;191(2):292–298. doi: 10.1016/0014-4827(90)90017-5. [DOI] [PubMed] [Google Scholar]
  23. Oliver G., De Robertis E. M., Wolpert L., Tickle C. Expression of a homeobox gene in the chick wing bud following application of retinoic acid and grafts of polarizing region tissue. EMBO J. 1990 Oct;9(10):3093–3099. doi: 10.1002/j.1460-2075.1990.tb07506.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pacifici M., Cossu G., Molinaro M., Tato F. Vitamin A inhibits chondrogenesis but not myogenesis. Exp Cell Res. 1980 Oct;129(2):469–474. doi: 10.1016/0014-4827(80)90517-0. [DOI] [PubMed] [Google Scholar]
  25. Pacifici M., Golden E. B., Iwamoto M., Adams S. L. Retinoic acid treatment induces type X collagen gene expression in cultured chick chondrocytes. Exp Cell Res. 1991 Jul;195(1):38–46. doi: 10.1016/0014-4827(91)90497-i. [DOI] [PubMed] [Google Scholar]
  26. Richman J. M., Diewert V. M. The fate of Meckel's cartilage chondrocytes in ocular culture. Dev Biol. 1988 Sep;129(1):48–60. doi: 10.1016/0012-1606(88)90160-1. [DOI] [PubMed] [Google Scholar]
  27. Schmid T. M., Linsenmayer T. F. A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization. J Biol Chem. 1983 Aug 10;258(15):9504–9509. [PubMed] [Google Scholar]
  28. Schmid T. M., Linsenmayer T. F. Developmental acquisition of type X collagen in the embryonic chick tibiotarsus. Dev Biol. 1985 Feb;107(2):373–381. doi: 10.1016/0012-1606(85)90319-7. [DOI] [PubMed] [Google Scholar]
  29. Shapiro S. S., Poon J. P. Effect of retinoic acid on chondrocyte glycosaminoglycan biosynthesis. Arch Biochem Biophys. 1976 May;174(1):74–81. doi: 10.1016/0003-9861(76)90325-8. [DOI] [PubMed] [Google Scholar]
  30. Solursh M. Differentiation of cartilage and bone. Curr Opin Cell Biol. 1989 Oct;1(5):989–994. doi: 10.1016/0955-0674(89)90070-7. [DOI] [PubMed] [Google Scholar]
  31. Solursh M., Jensen K. L., Reiter R. S., Schmid T. M., Linsenmayer T. F. Environmental regulation of type X collagen production by cultures of limb mesenchyme, mesectoderm, and sternal chondrocytes. Dev Biol. 1986 Sep;117(1):90–101. doi: 10.1016/0012-1606(86)90351-9. [DOI] [PubMed] [Google Scholar]
  32. Solursh M., Jensen K. L., Zanetti N. C., Linsenmayer T. F., Reiter R. S. Extracellular matrix mediates epithelial effects on chondrogenesis in vitro. Dev Biol. 1984 Oct;105(2):451–457. doi: 10.1016/0012-1606(84)90302-6. [DOI] [PubMed] [Google Scholar]
  33. Solursh M., Meier S. The selective inhibition of mucopolysaccharide synthesis by vitamin A treatment of cultured chick embryo chondrocytes. Calcif Tissue Res. 1973;13(2):131–142. doi: 10.1007/BF02015403. [DOI] [PubMed] [Google Scholar]
  34. Strauss P. G., Closs E. I., Schmidt J., Erfle V. Gene expression during osteogenic differentiation in mandibular condyles in vitro. J Cell Biol. 1990 Apr;110(4):1369–1378. doi: 10.1083/jcb.110.4.1369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tacchetti C., Quarto R., Campanile G., Cancedda R. Calcification of in vitro developed hypertrophic cartilage. Dev Biol. 1989 Apr;132(2):442–447. doi: 10.1016/0012-1606(89)90240-6. [DOI] [PubMed] [Google Scholar]
  36. Tacchetti C., Quarto R., Nitsch L., Hartmann D. J., Cancedda R. In vitro morphogenesis of chick embryo hypertrophic cartilage. J Cell Biol. 1987 Aug;105(2):999–1006. doi: 10.1083/jcb.105.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tamarin A., Crawley A., Lee J., Tickle C. Analysis of upper beak defects in chicken embryos following with retinoic acid. J Embryol Exp Morphol. 1984 Dec;84:105–123. [PubMed] [Google Scholar]
  38. Thaller C., Eichele G. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature. 1987 Jun 18;327(6123):625–628. doi: 10.1038/327625a0. [DOI] [PubMed] [Google Scholar]
  39. Tickle C., Alberts B., Wolpert L., Lee J. Local application of retinoic acid to the limb bond mimics the action of the polarizing region. Nature. 1982 Apr 8;296(5857):564–566. doi: 10.1038/296564a0. [DOI] [PubMed] [Google Scholar]
  40. Vasan N. S., Lash J. W. Chondrocyte metabolism as affected by vitamin A. Calcif Tissue Res. 1975 Dec 18;19(2):99–107. doi: 10.1007/BF02563995. [DOI] [PubMed] [Google Scholar]
  41. Wanek N., Gardiner D. M., Muneoka K., Bryant S. V. Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature. 1991 Mar 7;350(6313):81–83. doi: 10.1038/350081a0. [DOI] [PubMed] [Google Scholar]
  42. Yasui N., Benya P. D., Nimni M. E. Coordinate regulation of type IX and type II collagen synthesis during growth of chick chondrocytes in retinoic acid or 5-bromo-2'-deoxyuridine. J Biol Chem. 1986 Jun 15;261(17):7997–8001. [PubMed] [Google Scholar]
  43. Yoshioka C., Yagi T. Electron microscopic observations on the fate of hypertrophic chondrocytes in condylar cartilage of rat mandible. J Craniofac Genet Dev Biol. 1988;8(3):253–264. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES