Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Apr 2;117(2):337–345. doi: 10.1083/jcb.117.2.337

Distribution of the Na(+)-Ca2+ exchange protein in mammalian cardiac myocytes: an immunofluorescence and immunocolloidal gold-labeling study

PMCID: PMC2289429  PMID: 1373142

Abstract

The present study reports on the location of the Na(+)-Ca2+ exchanger in cardiac sarcolemma with immunofluorescence and immunoelectron microscopy. Both polyclonal and monoclonal antibodies to the Na(+)-Ca2+ exchanger were used. The mAb was produced from a hybridoma cell line generated by the fusion of mouse myeloma NS-1 cells with spleen cells from a mouse repeatedly immunized with isolated reconstituted canine cardiac Na(+)-Ca2+ exchanger (Philipson, K. D. S. Longoni, and R. Ward. 1988. Biochim. Biophys. Acta. 945:298-306). The polyclonal antibody has been described previously and reacts with three proteins (70, 120, 160 kD) in cardiac sarcolemma associated with the Na(+)-Ca2+ exchanger (Nicoll, D. A., S. Longoni, and K. D. Philipson. 1990. Science (Wash. DC). 250:562-565). Both the monoclonal and the polyclonal antibodies appear to react with extracellular facing epitopes in the cardiac sarcolemma. Immunofluorescence studies showed labeling of the transverse tubular membrane and patchy labeling of the peripheral sarcolemma. The immunofluorescent labeling clearly delineates the highly interconnected T-tubular system of guinea pig myocytes. This localization of the exchanger to the sarcolemma, with an apparent high density in the transverse tubules, was also seen with immunoelectron microscopy. It is of great interest that the Na(+)-Ca2+ exchanger, as the main efflux route for Ca2+ in heart cells, would be abundantly located in sarcolemma closest to the release of Ca2+.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barzilai A., Spanier R., Rahamimoff H. Isolation, purification, and reconstitution of the Na+ gradient-dependent Ca2+ transporter (Na+-Ca2+ exchanger) from brain synaptic plasma membranes. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6521–6525. doi: 10.1073/pnas.81.20.6521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhavanandan V. P., Katlic A. W. The interaction of wheat germ agglutinin with sialoglycoproteins. The role of sialic acid. J Biol Chem. 1979 May 25;254(10):4000–4008. [PubMed] [Google Scholar]
  3. Bridge J. H., Smolley J. R., Spitzer K. W. The relationship between charge movements associated with ICa and INa-Ca in cardiac myocytes. Science. 1990 Apr 20;248(4953):376–378. doi: 10.1126/science.2158147. [DOI] [PubMed] [Google Scholar]
  4. Cheon J., Reeves J. P. Site density of the sodium-calcium exchange carrier in reconstituted vesicles from bovine cardiac sarcolemma. J Biol Chem. 1988 Feb 15;263(5):2309–2315. [PubMed] [Google Scholar]
  5. Chevalier J., Pinto da Silva P., Ripoche P., Gobin R., Wang X. Y., Grossetete J., Bourguet J. Structural and cytochemical differentiation of membrane elements of the apical membrane of amphibian urinary bladder epithelial cells. A label fracture study. Biol Cell. 1985;55(3):181–190. doi: 10.1111/j.1768-322x.1985.tb00424.x. [DOI] [PubMed] [Google Scholar]
  6. Cook N. J., Kaupp U. B. Solubilization, purification, and reconstitution of the sodium-calcium exchanger from bovine retinal rod outer segments. J Biol Chem. 1988 Aug 15;263(23):11382–11388. [PubMed] [Google Scholar]
  7. Hilgemann D. W., Nicoll D. A., Philipson K. D. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature. 1991 Aug 22;352(6337):715–718. doi: 10.1038/352715a0. [DOI] [PubMed] [Google Scholar]
  8. Inui M., Saito A., Fleischer S. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. J Biol Chem. 1987 Nov 15;262(32):15637–15642. [PubMed] [Google Scholar]
  9. Kan F. W., Pinto da Silva P. Molecular demarcation of surface domains as established by label-fracture cytochemistry of boar spermatozoa. J Histochem Cytochem. 1987 Oct;35(10):1069–1078. doi: 10.1177/35.10.3624852. [DOI] [PubMed] [Google Scholar]
  10. MacKenzie D., Molday R. S. Organization of rhodopsin and a high molecular weight glycoprotein in rod photoreceptor disc membranes using monoclonal antibodies. J Biol Chem. 1982 Jun 25;257(12):7100–7105. [PubMed] [Google Scholar]
  11. Mitra R., Morad M. A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates. Am J Physiol. 1985 Nov;249(5 Pt 2):H1056–H1060. doi: 10.1152/ajpheart.1985.249.5.H1056. [DOI] [PubMed] [Google Scholar]
  12. Nicoll D. A., Longoni S., Philipson K. D. Molecular cloning and functional expression of the cardiac sarcolemmal Na(+)-Ca2+ exchanger. Science. 1990 Oct 26;250(4980):562–565. doi: 10.1126/science.1700476. [DOI] [PubMed] [Google Scholar]
  13. Peters B. P., Ebisu S., Goldstein I. J., Flashner M. Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 1979 Nov 27;18(24):5505–5511. doi: 10.1021/bi00591a038. [DOI] [PubMed] [Google Scholar]
  14. Philipson K. D., Longoni S., Ward R. Purification of the cardiac Na+-Ca2+ exchange protein. Biochim Biophys Acta. 1988 Nov 22;945(2):298–306. doi: 10.1016/0005-2736(88)90492-0. [DOI] [PubMed] [Google Scholar]
  15. Pinto da Silva P., Kan F. W. Label-fracture: a method for high resolution labeling of cell surfaces. J Cell Biol. 1984 Sep;99(3):1156–1161. doi: 10.1083/jcb.99.3.1156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reid D. M., Friedel U., Molday R. S., Cook N. J. Identification of the sodium-calcium exchanger as the major ricin-binding glycoprotein of bovine rod outer segments and its localization to the plasma membrane. Biochemistry. 1990 Feb 13;29(6):1601–1607. doi: 10.1021/bi00458a035. [DOI] [PubMed] [Google Scholar]
  17. Reuter H., Seitz N. The dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J Physiol. 1968 Mar;195(2):451–470. doi: 10.1113/jphysiol.1968.sp008467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roth J. Post-embedding cytochemistry with gold-labelled reagents: a review. J Microsc. 1986 Aug;143(Pt 2):125–137. doi: 10.1111/j.1365-2818.1986.tb02771.x. [DOI] [PubMed] [Google Scholar]
  19. Smith J. S., Imagawa T., Ma J., Fill M., Campbell K. P., Coronado R. Purified ryanodine receptor from rabbit skeletal muscle is the calcium-release channel of sarcoplasmic reticulum. J Gen Physiol. 1988 Jul;92(1):1–26. doi: 10.1085/jgp.92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stegemann M., Meyer R., Haas H. G., Robert-Nicoud M. The cell surface of isolated cardiac myocytes--a light microscope study with use of fluorochrome-coupled lectins. J Mol Cell Cardiol. 1990 Jul;22(7):787–803. doi: 10.1016/0022-2828(90)90090-o. [DOI] [PubMed] [Google Scholar]
  21. Tokuyasu K. T. Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J. 1989 Mar;21(3):163–171. doi: 10.1007/BF01007491. [DOI] [PubMed] [Google Scholar]
  22. Zampighi G. A., Hall J. E., Ehring G. R., Simon S. A. The structural organization and protein composition of lens fiber junctions. J Cell Biol. 1989 Jun;108(6):2255–2275. doi: 10.1083/jcb.108.6.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES