Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 May 1;117(3):687–694. doi: 10.1083/jcb.117.3.687

Domains of type X collagen: alteration of cartilage matrix by fibril association and proteoglycan accumulation

PMCID: PMC2289439  PMID: 1572897

Abstract

During endochondral bone formation, hypertrophic cartilage is replaced by bone or by a marrow cavity. The matrix of hypertrophic cartilage contains at least one tissue-specific component, type X collagen. Structurally type X collagen contains both a collagenous domain and a COOH-terminal non-collagenous one. However, the function(s) of this molecule have remained largely speculative. To examine the behavior and functions of type X collagen within hypertrophic cartilage, we (Chen, Q., E. Gibney, J. M. Fitch, C. Linsenmayer, T. M. Schmid, and T. F. Linsenmayer. 1990. Proc. Natl. Acad. Sci. USA. 87:8046-8050) recently devised an in vitro system in which exogenous type X collagen rapidly (15 min to several hours) moves into non-hypertrophic cartilage. There the molecule becomes associated with preexisting cartilage collagen fibrils. In the present investigation, we find that the isolated collagenous domain of type X collagen is sufficient for its association with fibrils. Furthermore, when non-hypertrophic cartilage is incubated for a longer time (overnight) with "intact" type X collagen, the molecule is found both in the matrix and inside of the chondrocytes. The properties of the matrix of such type X collagen-infiltrated cartilage become altered. Such changes include: (a) antigenic masking of type X collagen by proteoglycans; (b) loss of the permissiveness for further infiltration by type X collagen; and (c) enhanced accumulation of proteoglycans. Some of these changes are dependent on the presence of the COOH-terminal non-collagenous domain of the molecule. In fact, the isolated collagenous domain of type X collagen appears to exert an opposite effect on proteoglycan accumulation, producing a net decrease in their accumulation, particularly of the light form(s) of proteoglycans. Certain of these matrix alterations are similar to ones that have been observed to occur in vivo. This suggests that within hypertrophic cartilage type X collagen has regulatory as well as structural functions, and that these functions are achieved specifically by its two different domains.

Full Text

The Full Text of this article is available as a PDF (1,023.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bruckner P., Vaughan L., Winterhalter K. H. Type IX collagen from sternal cartilage of chicken embryo contains covalently bound glycosaminoglycans. Proc Natl Acad Sci U S A. 1985 May;82(9):2608–2612. doi: 10.1073/pnas.82.9.2608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chen Q. A., Gibney E., Fitch J. M., Linsenmayer C., Schmid T. M., Linsenmayer T. F. Long-range movement and fibril association of type X collagen within embryonic cartilage matrix. Proc Natl Acad Sci U S A. 1990 Oct;87(20):8046–8050. doi: 10.1073/pnas.87.20.8046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dean D. D., Muniz O. E., Berman I., Pita J. C., Carreno M. R., Woessner J. F., Jr, Howell D. S. Localization of collagenase in the growth plate of rachitic rats. J Clin Invest. 1985 Aug;76(2):716–722. doi: 10.1172/JCI112026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dublet B., Oh S., Sugrue S. P., Gordon M. K., Gerecke D. R., Olsen B. R., van der Rest M. The structure of avian type XII collagen. Alpha 1 (XII) chains contain 190-kDa non-triple helical amino-terminal domains and form homotrimeric molecules. J Biol Chem. 1989 Aug 5;264(22):13150–13156. [PubMed] [Google Scholar]
  5. Dublet B., van der Rest M. Type XIV collagen, a new homotrimeric molecule extracted from fetal bovine skin and tendon, with a triple helical disulfide-bonded domain homologous to type IX and type XII collagens. J Biol Chem. 1991 Apr 15;266(11):6853–6858. [PubMed] [Google Scholar]
  6. Fitch J. M., Birk D. E., Linsenmayer C., Linsenmayer T. F. The spatial organization of Descemet's membrane-associated type IV collagen in the avian cornea. J Cell Biol. 1990 Apr;110(4):1457–1468. doi: 10.1083/jcb.110.4.1457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fitch J. M., Gibney E., Sanderson R. D., Mayne R., Linsenmayer T. F. Domain and basement membrane specificity of a monoclonal antibody against chicken type IV collagen. J Cell Biol. 1982 Nov;95(2 Pt 1):641–647. doi: 10.1083/jcb.95.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson G. J., Bearman C. H., Flint M. H. The immunoperoxidase localization of type X collagen in chick cartilage and lung. Coll Relat Res. 1986 Jun;6(2):163–184. doi: 10.1016/s0174-173x(86)80023-1. [DOI] [PubMed] [Google Scholar]
  9. Gordon M. K., Gerecke D. R., Dublet B., van der Rest M., Olsen B. R. Type XII collagen. A large multidomain molecule with partial homology to type IX collagen. J Biol Chem. 1989 Nov 25;264(33):19772–19778. [PubMed] [Google Scholar]
  10. Hörlein D., McPherson J., Goh S. H., Bornstein P. Regulation of protein synthesis: translational control by procollagen-derived fragments. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6163–6167. doi: 10.1073/pnas.78.10.6163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Katayama K., Seyer J. M., Raghow R., Kang A. H. Regulation of extracellular matrix production by chemically synthesized subfragments of type I collagen carboxy propeptide. Biochemistry. 1991 Jul 23;30(29):7097–7104. doi: 10.1021/bi00243a009. [DOI] [PubMed] [Google Scholar]
  12. Keene D. R., Lunstrum G. P., Morris N. P., Stoddard D. W., Burgeson R. E. Two type XII-like collagens localize to the surface of banded collagen fibrils. J Cell Biol. 1991 May;113(4):971–978. doi: 10.1083/jcb.113.4.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kimata K., Oike Y., Ito K., Karasawa K., Suzuki S. The occurrence of low buoyant density proteoglycans in embryonic chick cartilage. Biochem Biophys Res Commun. 1978 Dec 29;85(4):1431–1439. doi: 10.1016/0006-291x(78)91163-4. [DOI] [PubMed] [Google Scholar]
  14. Kimata K., Okayama M., Ooira A., Suzuki S. Heterogeneity of proteochondroitin sulfates produced by chondrocytes at different stages of cytodifferentiation. J Biol Chem. 1974 Mar 10;249(5):1646–1653. [PubMed] [Google Scholar]
  15. Linsenmayer T. F., Chen Q. A., Gibney E., Gordon M. K., Marchant J. K., Mayne R., Schmid T. M. Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development. 1991 Jan;111(1):191–196. doi: 10.1242/dev.111.1.191. [DOI] [PubMed] [Google Scholar]
  16. Pacifici M. Independent secretion of proteoglycans and collagens in chick chondrocyte cultures during acute ascorbic acid treatment. Biochem J. 1990 Nov 15;272(1):193–199. doi: 10.1042/bj2720193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Poole A. R., Pidoux I. Immunoelectron microscopic studies of type X collagen in endochondral ossification. J Cell Biol. 1989 Nov;109(5):2547–2554. doi: 10.1083/jcb.109.5.2547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rapraeger A., Bernfield M. Cell surface proteoglycan of mammary epithelial cells. Protease releases a heparan sulfate-rich ectodomain from a putative membrane-anchored domain. J Biol Chem. 1985 Apr 10;260(7):4103–4109. [PubMed] [Google Scholar]
  19. Reginato A. M., Jimenez S. A. Biochemical characterization of the native tissue form of type X collagen from embryonic chick sternal cartilage and identification of a chymotrypsin-sensitive site within its triple-helical domain. Biochem J. 1991 Jan 15;273(Pt 2):333–338. doi: 10.1042/bj2730333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenberg L., Hellmann W., Kleinschmidt A. K. Electron microscopic studies of proteoglycan aggregates from bovine articular cartilage. J Biol Chem. 1975 Mar 10;250(5):1877–1883. [PubMed] [Google Scholar]
  21. Schmid T. M., Linsenmayer T. F. A short chain (pro)collagen from aged endochondral chondrocytes. Biochemical characterization. J Biol Chem. 1983 Aug 10;258(15):9504–9509. [PubMed] [Google Scholar]
  22. Schmid T. M., Linsenmayer T. F. Chains of matrix-derived type X collagen: size and aggregation properties. Connect Tissue Res. 1989;20(1-4):215–222. doi: 10.3109/03008208909023890. [DOI] [PubMed] [Google Scholar]
  23. Schmid T. M., Linsenmayer T. F. Immunoelectron microscopy of type X collagen: supramolecular forms within embryonic chick cartilage. Dev Biol. 1990 Mar;138(1):53–62. doi: 10.1016/0012-1606(90)90176-j. [DOI] [PubMed] [Google Scholar]
  24. Schmid T. M., Linsenmayer T. F. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 1985 Feb;100(2):598–605. doi: 10.1083/jcb.100.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmid T. M., Mayne R., Jeffrey J. J., Linsenmayer T. F. Type X collagen contains two cleavage sites for a vertebrate collagenase. J Biol Chem. 1986 Mar 25;261(9):4184–4189. [PubMed] [Google Scholar]
  26. Schmid T. M., Popp R. G., Linsenmayer T. F. Hypertrophic cartilage matrix. Type X collagen, supramolecular assembly, and calcification. Ann N Y Acad Sci. 1990;580:64–73. doi: 10.1111/j.1749-6632.1990.tb17918.x. [DOI] [PubMed] [Google Scholar]
  27. Shinomura T., Kimata K., Oike Y., Maeda N., Yano S., Suzuki S. Appearance of distinct types of proteoglycan in a well-defined temporal and spatial pattern during early cartilage formation in the chick limb. Dev Biol. 1984 May;103(1):211–220. doi: 10.1016/0012-1606(84)90022-8. [DOI] [PubMed] [Google Scholar]
  28. Summers T. A., Irwin M. H., Mayne R., Balian G. Monoclonal antibodies to type X collagen. Biosynthetic studies using an antibody to the amino-terminal domain. J Biol Chem. 1988 Jan 5;263(1):581–587. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES