Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 May 2;117(4):745–755. doi: 10.1083/jcb.117.4.745

Transendothelial transport of serum albumin: a quantitative immunocytochemical study

PMCID: PMC2289456  PMID: 1577854

Abstract

The steady-state distribution of endogenous albumin in mouse diaphragm was determined by quantitative postembedding protein A-gold immunocytochemistry using a specific anti-mouse albumin antibody. Labeling density was recorded over vascular lumen, endothelium, junctions, and subendothelial space. At equilibrium, the volume density of interstitial albumin was 18% of that in circulation. Despite this large difference in albumin concentration between capillary lumen and interstitium, plasmalemmal vesicles labeling was uniformly distributed across the endothelial profile. 68% of the junctions displayed labeling for albumin, which was however low and confined to the luminal and abluminal sides. The scarce labeling of the endothelial cell surface did not confirm the fiber matrix theory. The kinetics of albumin transcytosis was evaluated by injecting radioiodinated and DNP-tagged BSA. At 3, 10, 30, and 60 min, and 3, 5, and 24 h circulation time, blood radioactivity was measured and diaphragms were fixed and embedded. Anti-DNP antibodies were used to map the tracer in aforementioned compartments. A linear relationship between blood radioactivity and vascular labeling density was found, with a detection sensitivity approaching 1 gold particle per DNP-BSA molecule. Tracer presence over endothelial vesicles reached rapidly (10 min) a saturation value; initially localized near the luminal front, it evolved towards a uniform distribution across endothelium during the first hour. An hour was also needed to reach the saturation limit within the subendothelial space. Labeling of the junctions increased slowly, out of phase with the inferred transendothelial albumin fluxes. This suggests that they play little, if any, role in albumin transcytosis, which rather seems to proceed through the vesicular way.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bendayan M., Gingras D., Charest P. Distribution of endogenous albumin in the glomerular wall of streptozotocin-induced diabetic rats as revealed by high-resolution immunocytochemistry. Diabetologia. 1986 Dec;29(12):868–875. doi: 10.1007/BF00870142. [DOI] [PubMed] [Google Scholar]
  2. Bendayan M., Sandborn E., Rasio E. Studies of the capillary basal lamina. I. Ultrastructure of the red body of the eel swimbladder. Lab Invest. 1975 Jun;32(6):757–767. [PubMed] [Google Scholar]
  3. Bendayan M. Use of the protein A-gold technique for the morphological study of vascular permeability. J Histochem Cytochem. 1980 Nov;28(11):1251–1254. doi: 10.1177/28.11.7430615. [DOI] [PubMed] [Google Scholar]
  4. Bignon J., Chahinian P., Feldmann G., Sapin C. Ultrastructural immunoperoxidase demonstration of autologous albumin in the alveolar capillary membrane and in the alveolar lining material in normal rats. J Cell Biol. 1975 Feb;64(2):503–509. doi: 10.1083/jcb.64.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. CASLEY SMITH J. R. ENDOTHELIAL PERMEABILITY. II. THE PASSAGE OF PARTICLES THROUGH THE LYMPHATIC ENDOTHELIUM OF NORMAL AND INJURED EARS. Br J Exp Pathol. 1965 Feb;46:35–49. [PMC free article] [PubMed] [Google Scholar]
  7. Clough G., Michel C. C. The role of vesicles in the transport of ferritin through frog endothelium. J Physiol. 1981 Jun;315:127–142. doi: 10.1113/jphysiol.1981.sp013737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crone C. Modulation of solute permeability in microvascular endothelium. Fed Proc. 1986 Feb;45(2):77–83. [PubMed] [Google Scholar]
  9. Curry F. E., Michel C. C. A fiber matrix model of capillary permeability. Microvasc Res. 1980 Jul;20(1):96–99. doi: 10.1016/0026-2862(80)90024-2. [DOI] [PubMed] [Google Scholar]
  10. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  11. FRIEDMAN J. J. Vascular-extravascular equilibration of radioactive iodinated albumin in mice. Am J Physiol. 1957 Oct;191(1):115–118. doi: 10.1152/ajplegacy.1957.191.1.115. [DOI] [PubMed] [Google Scholar]
  12. Ghitescu L., Bendayan M. Immunolabeling efficiency of protein A-gold complexes. J Histochem Cytochem. 1990 Nov;38(11):1523–1530. doi: 10.1177/38.11.2212613. [DOI] [PubMed] [Google Scholar]
  13. Ghitescu L., Galis Z., Simionescu M., Simionescu N. Differentiated uptake and transcytosis of albumin in successive vascular segments. J Submicrosc Cytol Pathol. 1988 Oct;20(4):657–669. [PubMed] [Google Scholar]
  14. Gil J., Silage D. A., McNiff J. M. Distribution of vesicles in cells of air-blood barrier in the rabbit. J Appl Physiol Respir Environ Exerc Physiol. 1981 Feb;50(2):334–340. doi: 10.1152/jappl.1981.50.2.334. [DOI] [PubMed] [Google Scholar]
  15. Hart T. K., Pino R. M. Variations in capillary permeability from apex and crypt in the villus of the ileo-jejunum. Cell Tissue Res. 1985;241(2):305–315. doi: 10.1007/BF00217175. [DOI] [PubMed] [Google Scholar]
  16. Hashida R., Anamizu C., Kimura J., Ohkuma S., Yoshida Y., Takano T. Transcellular transport of lipoprotein through arterial endothelial cells in monolayer culture. Cell Struct Funct. 1986 Mar;11(1):31–42. doi: 10.1247/csf.11.31. [DOI] [PubMed] [Google Scholar]
  17. Huxley V. H., Curry F. E. Differential actions of albumin and plasma on capillary solute permeability. Am J Physiol. 1991 May;260(5 Pt 2):H1645–H1654. doi: 10.1152/ajpheart.1991.260.5.H1645. [DOI] [PubMed] [Google Scholar]
  18. Irie S., Tavassoli M. Liver endothelium desialates ceruloplasmin. Biochem Biophys Res Commun. 1986 Oct 15;140(1):94–100. doi: 10.1016/0006-291x(86)91062-4. [DOI] [PubMed] [Google Scholar]
  19. Jefferies W. A., Brandon M. R., Hunt S. V., Williams A. F., Gatter K. C., Mason D. Y. Transferrin receptor on endothelium of brain capillaries. Nature. 1984 Nov 8;312(5990):162–163. doi: 10.1038/312162a0. [DOI] [PubMed] [Google Scholar]
  20. Kellenberger E., Dürrenberger M., Villiger W., Carlemalm E., Wurtz M. The efficiency of immunolabel on Lowicryl sections compared to theoretical predictions. J Histochem Cytochem. 1987 Sep;35(9):959–969. doi: 10.1177/35.9.3302020. [DOI] [PubMed] [Google Scholar]
  21. Kessler K. F., Barth R. F., Wong K. P. Physicochemical studies of dinitrophenylated bovine serum albumin. Int J Pept Protein Res. 1982 Jul;20(1):73–80. doi: 10.1111/j.1399-3011.1982.tb02655.x. [DOI] [PubMed] [Google Scholar]
  22. King G. L., Johnson S. M. Receptor-mediated transport of insulin across endothelial cells. Science. 1985 Mar 29;227(4694):1583–1586. doi: 10.1126/science.3883490. [DOI] [PubMed] [Google Scholar]
  23. Londoño I., Bendayan M. Distribution of endogenous albumin across the rat aortic wall as revealed by quantitative immunocytochemistry. Am J Anat. 1989 Dec;186(4):407–416. doi: 10.1002/aja.1001860410. [DOI] [PubMed] [Google Scholar]
  24. Mazzone R. W., Kornblau S. M. Pinocytotic vesicles in the endothelium of rapidly frozen rabbit lung. Microvasc Res. 1981 Mar;21(2):193–211. doi: 10.1016/0026-2862(81)90032-7. [DOI] [PubMed] [Google Scholar]
  25. Milici A. J., Watrous N. E., Stukenbrok H., Palade G. E. Transcytosis of albumin in capillary endothelium. J Cell Biol. 1987 Dec;105(6 Pt 1):2603–2612. doi: 10.1083/jcb.105.6.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Noguchi Y., Shibata Y., Yamamoto T. Endothelial vesicular system in rapid-frozen muscle capillaries revealed by serial sectioning and deep etching. Anat Rec. 1987 Apr;217(4):355–360. doi: 10.1002/ar.1092170406. [DOI] [PubMed] [Google Scholar]
  27. Noguchi Y., Yamamoto T., Shibata Y. Distribution of endothelial vesicles in the microvasculature of skeletal muscle and brain cortex of the rat, as demonstrated by tannic acid tracer analysis. Cell Tissue Res. 1986;246(3):487–494. doi: 10.1007/BF00215188. [DOI] [PubMed] [Google Scholar]
  28. Parker J. C., Falgout H. J., Parker R. E., Granger D. N., Taylor A. E. The effect of fluid volume loading on exclusion of interstitial albumin and lymph flow in the dog lung. Circ Res. 1979 Oct;45(4):440–450. doi: 10.1161/01.res.45.4.440. [DOI] [PubMed] [Google Scholar]
  29. Pathak R. K., Anderson R. G. Use of dinitrophenol-IgG conjugates to detect sparse antigens by immunogold labeling. J Histochem Cytochem. 1989 Jan;37(1):69–74. doi: 10.1177/37.1.2491753. [DOI] [PubMed] [Google Scholar]
  30. Pino R. M. Restriction to endogenous plasma proteins by a fenestrated capillary endothelium: an ultrastructural immunocytochemical study of the choriocapillary endothelium. Am J Anat. 1985 Apr;172(4):279–289. doi: 10.1002/aja.1001720403. [DOI] [PubMed] [Google Scholar]
  31. Renkin E. M. Capillary transport of macromolecules: pores and other endothelial pathways. J Appl Physiol (1985) 1985 Feb;58(2):315–325. doi: 10.1152/jappl.1985.58.2.315. [DOI] [PubMed] [Google Scholar]
  32. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  33. Schneeberger E. E. Proteins and vesicular transport in capillary endothelium. Fed Proc. 1983 May 15;42(8):2419–2424. [PubMed] [Google Scholar]
  34. Shepard J. M., Moon D. G., Sherman P. F., Weston L. K., Del Vecchio P. J., Minnear F. L., Malik A. B., Kaplan J. E. Platelets decrease albumin permeability of pulmonary artery endothelial cell monolayers. Microvasc Res. 1989 May;37(3):256–266. doi: 10.1016/0026-2862(89)90044-7. [DOI] [PubMed] [Google Scholar]
  35. Simionescu N. Cellular aspects of transcapillary exchange. Physiol Rev. 1983 Oct;63(4):1536–1579. doi: 10.1152/physrev.1983.63.4.1536. [DOI] [PubMed] [Google Scholar]
  36. Soda R., Tavassoli M. Transendothelial transport (transcytosis) of iron-transferrin complex in the bone marrow. J Ultrastruct Res. 1984 Jul;88(1):18–29. doi: 10.1016/s0022-5320(84)90178-3. [DOI] [PubMed] [Google Scholar]
  37. Turner M. R., Clough G., Michel C. C. The effects of cationised ferritin and native ferritin upon the filtration coefficient of single frog capillaries. Evidence that proteins in the endothelial cell coat influence permeability. Microvasc Res. 1983 Mar;25(2):205–222. doi: 10.1016/0026-2862(83)90016-x. [DOI] [PubMed] [Google Scholar]
  38. WEIBEL E. R., GOMEZ D. M. A principle for counting tissue structures on random sections. J Appl Physiol. 1962 Mar;17:343–348. doi: 10.1152/jappl.1962.17.2.343. [DOI] [PubMed] [Google Scholar]
  39. Wagner R. C., Chen S. C. Ultrastructural distribution of terbium across capillary endothelium: detection by electron spectroscopic imaging and electron energy loss spectroscopy. J Histochem Cytochem. 1990 Feb;38(2):275–282. doi: 10.1177/38.2.2299181. [DOI] [PubMed] [Google Scholar]
  40. Ward B. J., Bauman K. F., Firth J. A. Interendothelial junctions of cardiac capillaries in rats: their structure and permeability properties. Cell Tissue Res. 1988 Apr;252(1):57–66. doi: 10.1007/BF00213826. [DOI] [PubMed] [Google Scholar]
  41. Wright A. K., Thompson M. R. Hydrodynamic structure of bovine serum albumin determined by transient electric birefringence. Biophys J. 1975 Feb;15(2 Pt 1):137–141. doi: 10.1016/s0006-3495(75)85797-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES