Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 May 2;117(4):799–811. doi: 10.1083/jcb.117.4.799

Meiosis, egg activation, and nuclear envelope breakdown are differentially reliant on Ca2+, whereas germinal vesicle breakdown is Ca2+ independent in the mouse oocyte

PMCID: PMC2289470  PMID: 1577859

Abstract

During early development, intracellular Ca2+ mobilization is not only essential for fertilization, but has also been implicated during other meiotic and mitotic events, such as germinal vesicle breakdown (GVBD) and nuclear envelope breakdown (NEBD). In this study, the roles of intracellular and extracellular Ca2+ were examined during meiotic maturation and reinitiation at parthenogenetic activation and during first mitosis in a single species using the same methodologies. Cumulus- free metaphase II mouse oocytes immediately resumed anaphase upon the induction of a large, transient Ca2+ elevation. This resumption of meiosis and associated events, such as cortical granule discharge, were not sensitive to extracellular Ca2+ removal, but were blocked by intracellular Ca2+ chelators. In contrast, meiosis I was dependent on external Ca2+; in its absence, the formation and function of the first meiotic spindle was delayed, the first polar body did not form and an interphase-like state was induced. GVBD was not dependent on external Ca2+ and showed no associated Ca2+ changes. NEBD at first mitosis in fertilized eggs, on the other hand, was frequently, but not always associated with a brief Ca2+ transient and was dependent on Ca2+ mobilization. We conclude that GVBD is Ca2+ independent, but that the dependence of NEBD on Ca2+ suggests regulation by more than one pathway. As cells develop from Ca(2+)-independent germinal vesicle oocytes to internal Ca(2+)-dependent pronuclear eggs, internal Ca2+ pools increase by approximately fourfold.

Full Text

The Full Text of this article is available as a PDF (4.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert P. R., Tashjian A. H., Jr Dual actions of phorbol esters on cytosolic free Ca2+ concentrations and reconstitution with ionomycin of acute thyrotropin-releasing hormone responses. J Biol Chem. 1985 Jul 25;260(15):8746–8759. [PubMed] [Google Scholar]
  2. Baitinger C., Alderton J., Poenie M., Schulman H., Steinhardt R. A. Multifunctional Ca2+/calmodulin-dependent protein kinase is necessary for nuclear envelope breakdown. J Cell Biol. 1990 Nov;111(5 Pt 1):1763–1773. doi: 10.1083/jcb.111.5.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bement W. M., Capco D. G. Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation in Xenopus laevis oocytes and eggs. J Cell Biol. 1989 Mar;108(3):885–892. doi: 10.1083/jcb.108.3.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bornslaeger E. A., Poueymirou W. T., Mattei P., Schultz R. M. Effects of protein kinase C activators on germinal vesicle breakdown and polar body emission of mouse oocytes. Exp Cell Res. 1986 Aug;165(2):507–517. doi: 10.1016/0014-4827(86)90603-8. [DOI] [PubMed] [Google Scholar]
  5. Busa W. B., Nuccitelli R. An elevated free cytosolic Ca2+ wave follows fertilization in eggs of the frog, Xenopus laevis. J Cell Biol. 1985 Apr;100(4):1325–1329. doi: 10.1083/jcb.100.4.1325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colonna R., Tatone C., Malgaroli A., Eusebi F., Mangia F. Effects of protein kinase C stimulation and free Ca2+ rise in mammalian egg activation. Gamete Res. 1989 Oct;24(2):171–183. doi: 10.1002/mrd.1120240205. [DOI] [PubMed] [Google Scholar]
  7. Cuthbertson K. S., Whittingham D. G., Cobbold P. H. Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature. 1981 Dec 24;294(5843):754–757. doi: 10.1038/294754a0. [DOI] [PubMed] [Google Scholar]
  8. De Felici M., Siracusa G. Survival of isolated, fully grown mouse ovarian oocytes is strictly dependent on external Ca2+. Dev Biol. 1982 Aug;92(2):539–543. doi: 10.1016/0012-1606(82)90198-1. [DOI] [PubMed] [Google Scholar]
  9. Ducibella T., Anderson E., Albertini D. F., Aalberg J., Rangarajan S. Quantitative studies of changes in cortical granule number and distribution in the mouse oocyte during meiotic maturation. Dev Biol. 1988 Nov;130(1):184–197. doi: 10.1016/0012-1606(88)90425-3. [DOI] [PubMed] [Google Scholar]
  10. Florman H. M., Tombes R. M., First N. L., Babcock D. F. An adhesion-associated agonist from the zona pellucida activates G protein-promoted elevations of internal Ca2+ and pH that mediate mammalian sperm acrosomal exocytosis. Dev Biol. 1989 Sep;135(1):133–146. doi: 10.1016/0012-1606(89)90164-4. [DOI] [PubMed] [Google Scholar]
  11. Foskett J. K., Melvin J. E. Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science. 1989 Jun 30;244(4912):1582–1585. doi: 10.1126/science.2500708. [DOI] [PubMed] [Google Scholar]
  12. Fukuda Y., Chang M. C. The time of cortical granule breakdown and sperm penetration in mouse and hamster eggs inseminated in vitro. Biol Reprod. 1978 Sep;19(2):261–266. doi: 10.1095/biolreprod19.2.261. [DOI] [PubMed] [Google Scholar]
  13. Fulton B. P., Whittingham D. G. Activation of mammalian oocytes by intracellular injection of calcium. Nature. 1978 May 11;273(5658):149–151. doi: 10.1038/273149a0. [DOI] [PubMed] [Google Scholar]
  14. Gilkey J. C., Jaffe L. F., Ridgway E. B., Reynolds G. T. A free calcium wave traverses the activating egg of the medaka, Oryzias latipes. J Cell Biol. 1978 Feb;76(2):448–466. doi: 10.1083/jcb.76.2.448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Hafner M., Petzelt C., Nobiling R., Pawley J. B., Kramp D., Schatten G. Wave of free calcium at fertilization in the sea urchin egg visualized with fura-2. Cell Motil Cytoskeleton. 1988;9(3):271–277. doi: 10.1002/cm.970090309. [DOI] [PubMed] [Google Scholar]
  17. Hamaguchi Y., Hamaguchi M. S. Simultaneous investigation of intracellular Ca2+ increase and morphological events upon fertilization in the sand dollar egg. Cell Struct Funct. 1990 Jun;15(3):159–162. doi: 10.1247/csf.15.159. [DOI] [PubMed] [Google Scholar]
  18. Heinecke J. W., Meier K. E., Lorenzen J. A., Shapiro B. M. A specific requirement for protein kinase C in activation of the respiratory burst oxidase of fertilization. J Biol Chem. 1990 May 15;265(14):7717–7720. [PubMed] [Google Scholar]
  19. Heinecke J. W., Shapiro B. M. Protein kinase C activates the respiratory burst of fertilization, but not cortical granule exocytosis, in ionophore-stimulated sea urchin eggs. Dev Biol. 1990 Nov;142(1):216–223. doi: 10.1016/0012-1606(90)90165-f. [DOI] [PubMed] [Google Scholar]
  20. Hepler P. K. Calcium transients during mitosis: observations in flux. J Cell Biol. 1989 Dec;109(6 Pt 1):2567–2573. doi: 10.1083/jcb.109.6.2567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hepler P. K., Callaham D. A. Free calcium increases during anaphase in stamen hair cells of Tradescantia. J Cell Biol. 1987 Nov;105(5):2137–2143. doi: 10.1083/jcb.105.5.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jaffe L. F. Sources of calcium in egg activation: a review and hypothesis. Dev Biol. 1983 Oct;99(2):265–276. doi: 10.1016/0012-1606(83)90276-2. [DOI] [PubMed] [Google Scholar]
  23. Jagiello G., Ducayen M. B., Downey R., Jonassen A. Alterations of mammalian oocyte meiosis I with divalent cations and calmodulin. Cell Calcium. 1982 May;3(2):153–162. doi: 10.1016/0143-4160(82)90011-2. [DOI] [PubMed] [Google Scholar]
  24. Jessus C., Rime H., Haccard O., Van Lint J., Goris J., Merlevede W., Ozon R. Tyrosine phosphorylation of p34cdc2 and p42 during meiotic maturation of Xenopus oocyte. Antagonistic action of okadaic acid and 6-DMAP. Development. 1991 Mar;111(3):813–820. doi: 10.1242/dev.111.3.813. [DOI] [PubMed] [Google Scholar]
  25. Kao J. P., Alderton J. M., Tsien R. Y., Steinhardt R. A. Active involvement of Ca2+ in mitotic progression of Swiss 3T3 fibroblasts. J Cell Biol. 1990 Jul;111(1):183–196. doi: 10.1083/jcb.111.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kao J. P., Harootunian A. T., Tsien R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989 May 15;264(14):8179–8184. [PubMed] [Google Scholar]
  27. Kline D., Kline J. T. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol. 1992 Jan;149(1):80–89. doi: 10.1016/0012-1606(92)90265-i. [DOI] [PubMed] [Google Scholar]
  28. Kubiak J. Z. Mouse oocytes gradually develop the capacity for activation during the metaphase II arrest. Dev Biol. 1989 Dec;136(2):537–545. doi: 10.1016/0012-1606(89)90279-0. [DOI] [PubMed] [Google Scholar]
  29. Kurasawa S., Schultz R. M., Kopf G. S. Egg-induced modifications of the zona pellucida of mouse eggs: effects of microinjected inositol 1,4,5-trisphosphate. Dev Biol. 1989 May;133(1):295–304. doi: 10.1016/0012-1606(89)90320-5. [DOI] [PubMed] [Google Scholar]
  30. Leibfried L., First N. L. Effects of divalent cations on in vitro maturation of bovine oocytes. J Exp Zool. 1979 Dec;210(3):575–580. doi: 10.1002/jez.1402100322. [DOI] [PubMed] [Google Scholar]
  31. Luca F. C., Ruderman J. V. Control of programmed cyclin destruction in a cell-free system. J Cell Biol. 1989 Nov;109(5):1895–1909. doi: 10.1083/jcb.109.5.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Malgaroli A., Milani D., Meldolesi J., Pozzan T. Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells. J Cell Biol. 1987 Nov;105(5):2145–2155. doi: 10.1083/jcb.105.5.2145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Masui Y., Meyerhof P. G., Miller M. A., Wasserman W. J. Roles of divalent cations in maturation and activation of vertebrate oocytes. Differentiation. 1977 Oct 20;9(1-2):49–57. doi: 10.1111/j.1432-0436.1977.tb01518.x. [DOI] [PubMed] [Google Scholar]
  34. Miyazaki S., Hashimoto N., Yoshimoto Y., Kishimoto T., Igusa Y., Hiramoto Y. Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev Biol. 1986 Nov;118(1):259–267. doi: 10.1016/0012-1606(86)90093-x. [DOI] [PubMed] [Google Scholar]
  35. Moreau M., Guerrier P., Doree M., Ashley C. C. Hormone-induced release of intracellular Ca2+ triggers meiosis in starfish oocytes. Nature. 1978 Mar 16;272(5650):251–253. doi: 10.1038/272251a0. [DOI] [PubMed] [Google Scholar]
  36. Nurse P. Universal control mechanism regulating onset of M-phase. Nature. 1990 Apr 5;344(6266):503–508. doi: 10.1038/344503a0. [DOI] [PubMed] [Google Scholar]
  37. Osmani A. H., McGuire S. L., Osmani S. A. Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell. 1991 Oct 18;67(2):283–291. doi: 10.1016/0092-8674(91)90180-7. [DOI] [PubMed] [Google Scholar]
  38. Osmani S. A., Pu R. T., Morris N. R. Mitotic induction and maintenance by overexpression of a G2-specific gene that encodes a potential protein kinase. Cell. 1988 Apr 22;53(2):237–244. doi: 10.1016/0092-8674(88)90385-6. [DOI] [PubMed] [Google Scholar]
  39. Paleos G. A., Powers R. D. The effect of calcium on the first meiotic division of the mammalian oocyte. J Exp Zool. 1981 Sep;217(3):409–416. doi: 10.1002/jez.1402170312. [DOI] [PubMed] [Google Scholar]
  40. Picard A., Cavadore J. C., Lory P., Bernengo J. C., Ojeda C., Dorée M. Microinjection of a conserved peptide sequence of p34cdc2 induces a Ca2+ transient in oocytes. Science. 1990 Jan 19;247(4940):327–329. doi: 10.1126/science.2153316. [DOI] [PubMed] [Google Scholar]
  41. Picard A., Dorée M. Is calcium the second messenger of 1-methyladenine in meiosis reinitiation of starfish oocytes? Exp Cell Res. 1983 May;145(2):325–337. doi: 10.1016/0014-4827(83)90011-3. [DOI] [PubMed] [Google Scholar]
  42. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  43. Powers R. D., Paleos G. A. Combined effects of calcium and dibutyryl cyclic AMP on germinal vesicle breakdown in the mouse oocyte. J Reprod Fertil. 1982 Sep;66(1):1–8. doi: 10.1530/jrf.0.0660001. [DOI] [PubMed] [Google Scholar]
  44. Rakow T. L., Shen S. S. Multiple stores of calcium are released in the sea urchin egg during fertilization. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9285–9289. doi: 10.1073/pnas.87.23.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ratan R. R., Maxfield F. R., Shelanski M. L. Long-lasting and rapid calcium changes during mitosis. J Cell Biol. 1988 Sep;107(3):993–999. doi: 10.1083/jcb.107.3.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ridgway E. B., Gilkey J. C., Jaffe L. F. Free calcium increases explosively in activating medaka eggs. Proc Natl Acad Sci U S A. 1977 Feb;74(2):623–627. doi: 10.1073/pnas.74.2.623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Rime H., Neant I., Guerrier P., Ozon R. 6-Dimethylaminopurine (6-DMAP), a reversible inhibitor of the transition to metaphase during the first meiotic cell division of the mouse oocyte. Dev Biol. 1989 May;133(1):169–179. doi: 10.1016/0012-1606(89)90308-4. [DOI] [PubMed] [Google Scholar]
  48. Russell P., Nurse P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell. 1987 May 22;49(4):559–567. doi: 10.1016/0092-8674(87)90458-2. [DOI] [PubMed] [Google Scholar]
  49. Sagata N., Watanabe N., Vande Woude G. F., Ikawa Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature. 1989 Nov 30;342(6249):512–518. doi: 10.1038/342512a0. [DOI] [PubMed] [Google Scholar]
  50. Schatten G., Simerly C., Schatten H. Microtubule configurations during fertilization, mitosis, and early development in the mouse and the requirement for egg microtubule-mediated motility during mammalian fertilization. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4152–4156. doi: 10.1073/pnas.82.12.4152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Schroeder A. C., Downs S. M., Eppig J. J. Factors affecting the developmental capacity of mouse oocytes undergoing maturation in vitro. Ann N Y Acad Sci. 1988;541:197–204. doi: 10.1111/j.1749-6632.1988.tb22256.x. [DOI] [PubMed] [Google Scholar]
  52. Schroeder A. C., Eppig J. J. The developmental capacity of mouse oocytes that matured spontaneously in vitro is normal. Dev Biol. 1984 Apr;102(2):493–497. doi: 10.1016/0012-1606(84)90215-x. [DOI] [PubMed] [Google Scholar]
  53. Schuetz A. W. Induction of nuclear breakdown and meiosis in Spisula solidissima oocytes by calcium ionophore. J Exp Zool. 1975 Mar;191(3):433–440. doi: 10.1002/jez.1401910313. [DOI] [PubMed] [Google Scholar]
  54. Shapiro B. M. The control of oxidant stress at fertilization. Science. 1991 Apr 26;252(5005):533–536. doi: 10.1126/science.1850548. [DOI] [PubMed] [Google Scholar]
  55. Silver R. B. Nuclear envelope breakdown and mitosis in sand dollar embryos is inhibited by microinjection of calcium buffers in a calcium-reversible fashion, and by antagonists of intracellular Ca2+ channels. Dev Biol. 1989 Jan;131(1):11–26. doi: 10.1016/s0012-1606(89)80034-x. [DOI] [PubMed] [Google Scholar]
  56. Simerly C., Balczon R., Brinkley B. R., Schatten G. Microinjected centromere [corrected] kinetochore antibodies interfere with chromosome movement in meiotic and mitotic mouse oocytes. J Cell Biol. 1990 Oct;111(4):1491–1504. doi: 10.1083/jcb.111.4.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Speksnijder J. E., Corson D. W., Sardet C., Jaffe L. F. Free calcium pulses following fertilization in the ascidian egg. Dev Biol. 1989 Sep;135(1):182–190. doi: 10.1016/0012-1606(89)90168-1. [DOI] [PubMed] [Google Scholar]
  58. Speksnijder J. E., Sardet C., Jaffe L. F. Periodic calcium waves cross ascidian eggs after fertilization. Dev Biol. 1990 Nov;142(1):246–249. doi: 10.1016/0012-1606(90)90168-i. [DOI] [PubMed] [Google Scholar]
  59. Steinhardt R. A., Alderton J. M. Calmodulin confers calcium sensitivity on secretory exocytosis. Nature. 1982 Jan 14;295(5845):154–155. doi: 10.1038/295154a0. [DOI] [PubMed] [Google Scholar]
  60. Steinhardt R. A., Alderton J. Intracellular free calcium rise triggers nuclear envelope breakdown in the sea urchin embryo. Nature. 1988 Mar 24;332(6162):364–366. doi: 10.1038/332364a0. [DOI] [PubMed] [Google Scholar]
  61. Steinhardt R. A., Epel D. Activation of sea-urchin eggs by a calcium ionophore. Proc Natl Acad Sci U S A. 1974 May;71(5):1915–1919. doi: 10.1073/pnas.71.5.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Steinhardt R. A., Epel D., Carroll E. J., Jr, Yanagimachi R. Is calcium ionophore a universal activator for unfertilised eggs? Nature. 1974 Nov 1;252(5478):41–43. doi: 10.1038/252041a0. [DOI] [PubMed] [Google Scholar]
  63. Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Swann K., Whitaker M. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J Cell Biol. 1986 Dec;103(6 Pt 1):2333–2342. doi: 10.1083/jcb.103.6.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Tombes R. M., Borisy G. G. Intracellular free calcium and mitosis in mammalian cells: anaphase onset is calcium modulated, but is not triggered by a brief transient. J Cell Biol. 1989 Aug;109(2):627–636. doi: 10.1083/jcb.109.2.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Tsafriri A., Bar-Ami S. Role of divalent cations in the resumption of meiosis of rat oocytes. J Exp Zool. 1978 Aug;205(2):293–300. doi: 10.1002/jez.1402050213. [DOI] [PubMed] [Google Scholar]
  67. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  68. Wassarman P. M., Josefowicz W. J., Letourneau G. E. Meiotic maturation of mouse oocytes in vitro: inhibition of maturation at specific stages of nuclear progression. J Cell Sci. 1976 Dec;22(3):531–545. doi: 10.1242/jcs.22.3.531. [DOI] [PubMed] [Google Scholar]
  69. Wasserman W. J., Masui Y. Initiation of meiotic maturation in Xenopus laevis oocytes by the combination of divalent cations and ionophore A23187. J Exp Zool. 1975 Sep;193(3):369–375. doi: 10.1002/jez.1401930313. [DOI] [PubMed] [Google Scholar]
  70. Watanabe N., Vande Woude G. F., Ikawa Y., Sagata N. Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature. 1989 Nov 30;342(6249):505–511. doi: 10.1038/342505a0. [DOI] [PubMed] [Google Scholar]
  71. Whitaker M., Patel R. Calcium and cell cycle control. Development. 1990 Apr;108(4):525–542. doi: 10.1242/dev.108.4.525. [DOI] [PubMed] [Google Scholar]
  72. Whittingham D. G., Siracusa G. The involvement of calcium in the activation of mammalian oocytes. Exp Cell Res. 1978 May;113(2):311–317. doi: 10.1016/0014-4827(78)90371-3. [DOI] [PubMed] [Google Scholar]
  73. Wickramasinghe D., Ebert K. M., Albertini D. F. Meiotic competence acquisition is associated with the appearance of M-phase characteristics in growing mouse oocytes. Dev Biol. 1991 Jan;143(1):162–172. doi: 10.1016/0012-1606(91)90063-9. [DOI] [PubMed] [Google Scholar]
  74. Witchel H. J., Steinhardt R. A. 1-Methyladenine can consistently induce a fura-detectable transient calcium increase which is neither necessary nor sufficient for maturation in oocytes of the starfish Asterina miniata. Dev Biol. 1990 Oct;141(2):393–398. doi: 10.1016/0012-1606(90)90393-w. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES