Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 May 2;117(4):877–887. doi: 10.1083/jcb.117.4.877

A soluble form of the F3 neuronal cell adhesion molecule promotes neurite outgrowth

PMCID: PMC2289471  PMID: 1315782

Abstract

The F3 molecule is a member of the immunoglobulin superfamily anchored to membranes by a glycane-phosphatidylinositol, and is predominantly expressed on subsets of axons of the central and peripheral nervous system. In a previous paper (Gennarini, G., P. Durbec, A. Boned, G. Rougon, and C. Goridis. 1991. Neuron. 6:595-606), we have established that F3 fulfills the operational definition of a cell adhesion molecule and that it stimulates neurite outgrowth when presented to sensory neurons as a surface component of transfected CHO cells. In the present study the question as to whether soluble forms of F3 would be functionally active was addressed in vitro on cultures of mouse dorsal root ganglion neurons. We observed that preparations enriched in soluble F3 had no effect on neuron attachment but enhanced neurite initiation and neurite outgrowth in a dose-dependent manner. By contrast, soluble NCAM-120 does not have any measurable effect on these phenomena. Addition of anti-F3 monovalent antibodies reduced the number of process-bearing neurons and the neuritic output per neuron to control values. Addition of cerebrospinal fluid, a natural source of soluble F3, also stimulated neurite extension, and this effect was partially blocked by anti-F3 antibodies. Our results suggest that the soluble forms of adhesive proteins with neurite outgrowth-promoting properties could act at a distance from their site of release in a way reminiscent of growth and trophic factors.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bock E., Edvardsen K., Gibson A., Linnemann D., Lyles J. M., Nybroe O. Characterization of soluble forms of NCAM. FEBS Lett. 1987 Dec 10;225(1-2):33–36. doi: 10.1016/0014-5793(87)81126-2. [DOI] [PubMed] [Google Scholar]
  2. Brümmendorf T., Wolff J. M., Frank R., Rathjen F. G. Neural cell recognition molecule F11: homology with fibronectin type III and immunoglobulin type C domains. Neuron. 1989 Apr;2(4):1351–1361. doi: 10.1016/0896-6273(89)90073-1. [DOI] [PubMed] [Google Scholar]
  3. Chang S., Rathjen F. G., Raper J. A. Extension of neurites on axons is impaired by antibodies against specific neural cell surface glycoproteins. J Cell Biol. 1987 Feb;104(2):355–362. doi: 10.1083/jcb.104.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dodd J., Jessell T. M. Axon guidance and the patterning of neuronal projections in vertebrates. Science. 1988 Nov 4;242(4879):692–699. doi: 10.1126/science.3055291. [DOI] [PubMed] [Google Scholar]
  5. Doherty P., Ashton S. V., Moore S. E., Walsh F. S. Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal Ca2+ channels. Cell. 1991 Oct 4;67(1):21–33. doi: 10.1016/0092-8674(91)90569-k. [DOI] [PubMed] [Google Scholar]
  6. Doherty P., Fruns M., Seaton P., Dickson G., Barton C. H., Sears T. A., Walsh F. S. A threshold effect of the major isoforms of NCAM on neurite outgrowth. Nature. 1990 Feb 1;343(6257):464–466. doi: 10.1038/343464a0. [DOI] [PubMed] [Google Scholar]
  7. Dulley J. R., Grieve P. A. A simple technique for eliminating interference by detergents in the Lowry method of protein determination. Anal Biochem. 1975 Mar;64(1):136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
  8. Faivre-Sarrailh C., Gennarini G., Goridis C., Rougon G. F3/F11 cell surface molecule expression in the developing mouse cerebellum is polarized at synaptic sites and within granule cells. J Neurosci. 1992 Jan;12(1):257–267. doi: 10.1523/JNEUROSCI.12-01-00257.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Filbin M. T., Walsh F. S., Trapp B. D., Pizzey J. A., Tennekoon G. I. Role of myelin P0 protein as a homophilic adhesion molecule. Nature. 1990 Apr 26;344(6269):871–872. doi: 10.1038/344871a0. [DOI] [PubMed] [Google Scholar]
  10. Furley A. J., Morton S. B., Manalo D., Karagogeos D., Dodd J., Jessell T. M. The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity. Cell. 1990 Apr 6;61(1):157–170. doi: 10.1016/0092-8674(90)90223-2. [DOI] [PubMed] [Google Scholar]
  11. Gennarini G., Cibelli G., Rougon G., Mattei M. G., Goridis C. The mouse neuronal cell surface protein F3: a phosphatidylinositol-anchored member of the immunoglobulin superfamily related to chicken contactin. J Cell Biol. 1989 Aug;109(2):775–788. doi: 10.1083/jcb.109.2.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gennarini G., Durbec P., Boned A., Rougon G., Goridis C. Transfected F3/F11 neuronal cell surface protein mediates intercellular adhesion and promotes neurite outgrowth. Neuron. 1991 Apr;6(4):595–606. doi: 10.1016/0896-6273(91)90062-5. [DOI] [PubMed] [Google Scholar]
  13. Gennarini G., Hirsch M. R., He H. T., Hirn M., Finne J., Goridis C. Differential expression of mouse neural cell-adhesion molecule (N-CAM) mRNA species during brain development and in neural cell lines. J Neurosci. 1986 Jul;6(7):1983–1990. doi: 10.1523/JNEUROSCI.06-07-01983.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gennarini G., Rougon G., Goridis C. F3: a new developmentally regulated member of the HNK-1 family. Acta Histochem Suppl. 1990;38:65–69. [PubMed] [Google Scholar]
  15. Gennarini G., Rougon G., Vitiello F., Corsi P., Di Benedetta C., Goridis C. Identification and cDNA cloning of a new member of the L2/HNK-1 family of neural surface glycoproteins. J Neurosci Res. 1989 Jan;22(1):1–12. doi: 10.1002/jnr.490220102. [DOI] [PubMed] [Google Scholar]
  16. He H. T., Finne J., Goridis C. Biosynthesis, membrane association, and release of N-CAM-120, a phosphatidylinositol-linked form of the neural cell adhesion molecule. J Cell Biol. 1987 Dec;105(6 Pt 1):2489–2500. doi: 10.1083/jcb.105.6.2489. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson P. W., Abramow-Newerly W., Seilheimer B., Sadoul R., Tropak M. B., Arquint M., Dunn R. J., Schachner M., Roder J. C. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron. 1989 Sep;3(3):377–385. doi: 10.1016/0896-6273(89)90262-6. [DOI] [PubMed] [Google Scholar]
  18. Karagogeos D., Morton S. B., Casano F., Dodd J., Jessell T. M. Developmental expression of the axonal glycoprotein TAG-1: differential regulation by central and peripheral neurons in vitro. Development. 1991 May;112(1):51–67. doi: 10.1242/dev.112.1.51. [DOI] [PubMed] [Google Scholar]
  19. Lagenaur C., Lemmon V. An L1-like molecule, the 8D9 antigen, is a potent substrate for neurite extension. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7753–7757. doi: 10.1073/pnas.84.21.7753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Low M. G., Saltiel A. R. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988 Jan 15;239(4837):268–275. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
  21. Moos M., Tacke R., Scherer H., Teplow D., Früh K., Schachner M. Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature. 1988 Aug 25;334(6184):701–703. doi: 10.1038/334701a0. [DOI] [PubMed] [Google Scholar]
  22. Pollard J. W., Stanners C. P. Characterization of cell lines showing growth control isolated from both the wild type and a leucyl-tRNA synthetase mutant of Chinese hamster ovary cells. J Cell Physiol. 1979 Mar;98(3):571–585. doi: 10.1002/jcp.1040980315. [DOI] [PubMed] [Google Scholar]
  23. Rathjen F. G., Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984 Jan;3(1):1–10. doi: 10.1002/j.1460-2075.1984.tb01753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rathjen F. G., Wolff J. M., Chang S., Bonhoeffer F., Raper J. A. Neurofascin: a novel chick cell-surface glycoprotein involved in neurite-neurite interactions. Cell. 1987 Dec 4;51(5):841–849. doi: 10.1016/0092-8674(87)90107-3. [DOI] [PubMed] [Google Scholar]
  25. Rathjen F. G., Wolff J. M., Frank R., Bonhoeffer F., Rutishauser U. Membrane glycoproteins involved in neurite fasciculation. J Cell Biol. 1987 Feb;104(2):343–353. doi: 10.1083/jcb.104.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rougon G., Deagostini-Bazin H., Hirn M., Goridis C. Tissue- and developmental stage-specific forms of a neural cell surface antigen linked to differences in glycosylation of a common polypeptide. EMBO J. 1982;1(10):1239–1244. doi: 10.1002/j.1460-2075.1982.tb00019.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rougon G., Hirsch M. R., Hirn M., Guenet J. L., Goridis C. Monoclonal antibody to neural cell surface protein: identification of a glycoprotein family of restricted cellular localization. Neuroscience. 1983 Oct;10(2):511–520. doi: 10.1016/0306-4522(83)90149-5. [DOI] [PubMed] [Google Scholar]
  28. Rougon G., Marshak D. R. Structural and immunological characterization of the amino-terminal domain of mammalian neural cell adhesion molecules. J Biol Chem. 1986 Mar 5;261(7):3396–3401. [PubMed] [Google Scholar]
  29. Ruegg M. A., Stoeckli E. T., Lanz R. B., Streit P., Sonderegger P. A homologue of the axonally secreted protein axonin-1 is an integral membrane protein of nerve fiber tracts involved in neurite fasciculation. J Cell Biol. 1989 Nov;109(5):2363–2378. doi: 10.1083/jcb.109.5.2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ruoslahti E. Fibronectin and its receptors. Annu Rev Biochem. 1988;57:375–413. doi: 10.1146/annurev.bi.57.070188.002111. [DOI] [PubMed] [Google Scholar]
  31. Schneider-Schaulies J., von Brunn A., Schachner M. Recombinant peripheral myelin protein P0 confers both adhesion and neurite outgrowth-promoting properties. J Neurosci Res. 1990 Nov;27(3):286–297. doi: 10.1002/jnr.490270307. [DOI] [PubMed] [Google Scholar]
  32. Schuch U., Lohse M. J., Schachner M. Neural cell adhesion molecules influence second messenger systems. Neuron. 1989 Jul;3(1):13–20. doi: 10.1016/0896-6273(89)90111-6. [DOI] [PubMed] [Google Scholar]
  33. Stoeckli E. T., Kuhn T. B., Duc C. O., Ruegg M. A., Sonderegger P. The axonally secreted protein axonin-1 is a potent substratum for neurite growth. J Cell Biol. 1991 Feb;112(3):449–455. doi: 10.1083/jcb.112.3.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sweadner K. J. Size, shape, and solubility of a class of releasable cell surface proteins of sympathetic neurons. J Neurosci. 1983 Dec;3(12):2518–2524. doi: 10.1523/JNEUROSCI.03-12-02518.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988 Apr;102(4):639–655. doi: 10.1242/dev.102.4.639. [DOI] [PubMed] [Google Scholar]
  36. Théveniau M. A., Malapert P., Rougon G. N. Antibody against Bacillus thuringiensis phosphatidylinositol-phospholipase C: some examples of its potential uses. Immunol Cell Biol. 1990 Apr;68(Pt 2):87–93. doi: 10.1038/icb.1990.13. [DOI] [PubMed] [Google Scholar]
  37. Wheelock M. J., Buck C. A., Bechtol K. B., Damsky C. H. Soluble 80-kd fragment of cell-CAM 120/80 disrupts cell-cell adhesion. J Cell Biochem. 1987 Jul;34(3):187–202. doi: 10.1002/jcb.240340305. [DOI] [PubMed] [Google Scholar]
  38. Williams A. F., Barclay A. N. The immunoglobulin superfamily--domains for cell surface recognition. Annu Rev Immunol. 1988;6:381–405. doi: 10.1146/annurev.iy.06.040188.002121. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES