Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jun 1;117(5):1031–1040. doi: 10.1083/jcb.117.5.1031

Lattice defects in microtubules: protofilament numbers vary within individual microtubules

PMCID: PMC2289483  PMID: 1577866

Abstract

We have used cryo-electron microscopy of vitrified specimens to study microtubules assembled both from three cycle purified tubulin (3x- tubulin) and in cell free extracts of Xenopus eggs. In vitro assembled 3x-tubulin samples have a majority of microtubules with 14 protofilaments whereas in cell extracts most microtubules have 13 protofilaments. Microtubule polymorphism was observed in both cases. The number of protofilaments can change abruptly along individual microtubules usually by single increments but double increments also occur. For 3x-tubulin, increasing the magnesium concentration decreases the proportion of 14 protofilament microtubules and decreases the average separation between transitions in these microtubules. Protofilament discontinuities may correspond to dislocation-like defects in the microtubule surface lattice.

Full Text

The Full Text of this article is available as a PDF (4.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aamodt E. J., Culotti J. G. Microtubules and microtubule-associated proteins from the nematode Caenorhabditis elegans: periodic cross-links connect microtubules in vitro. J Cell Biol. 1986 Jul;103(1):23–31. doi: 10.1083/jcb.103.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
  3. Asnes C. F., Wilson L. Isolation of bovine brain microtubule protein without glycerol: polymerization kinetics change during purification cycles. Anal Biochem. 1979 Sep 15;98(1):64–73. doi: 10.1016/0003-2697(79)90706-1. [DOI] [PubMed] [Google Scholar]
  4. Beese L., Stubbs G., Cohen C. Microtubule structure at 18 A resolution. J Mol Biol. 1987 Mar 20;194(2):257–264. doi: 10.1016/0022-2836(87)90373-1. [DOI] [PubMed] [Google Scholar]
  5. Belmont L. D., Hyman A. A., Sawin K. E., Mitchison T. J. Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts. Cell. 1990 Aug 10;62(3):579–589. doi: 10.1016/0092-8674(90)90022-7. [DOI] [PubMed] [Google Scholar]
  6. Binder L. I., Rosenbaum J. L. The in vitro assembly of flagellar outer doublet tubulin. J Cell Biol. 1978 Nov;79(2 Pt 1):500–515. doi: 10.1083/jcb.79.2.500. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burton P. R., Hinkley R. E., Pierson G. B. Tannic acid-stained microtubules with 12, 13, and 15 protofilaments. J Cell Biol. 1975 Apr;65(1):227–233. doi: 10.1083/jcb.65.1.227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Böhm K. J., Vater W., Fenske H., Unger E. Effect of microtubule-associated proteins on the protofilament number of microtubules assembled in vitro. Biochim Biophys Acta. 1984 Jul 30;800(2):119–126. doi: 10.1016/0304-4165(84)90049-7. [DOI] [PubMed] [Google Scholar]
  9. Chalfie M., Thomson J. N. Structural and functional diversity in the neuronal microtubules of Caenorhabditis elegans. J Cell Biol. 1982 Apr;93(1):15–23. doi: 10.1083/jcb.93.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chrétien D., Wade R. H. New data on the microtubule surface lattice. Biol Cell. 1991;71(1-2):161–174. doi: 10.1016/0248-4900(91)90062-r. [DOI] [PubMed] [Google Scholar]
  11. Eichenlaub-Ritter U. Spatiotemporal control of functional specification and distribution of spindle microtubules with 13, 14 and 15 protofilaments during mitosis in the ciliate Nyctotherus. J Cell Sci. 1985 Jun;76:337–355. doi: 10.1242/jcs.76.1.337. [DOI] [PubMed] [Google Scholar]
  12. Eichenlaub-Ritter U., Tucker J. B. Microtubules with more than 13 protofilaments in the dividing nuclei of ciliates. Nature. 1984 Jan 5;307(5946):60–62. doi: 10.1038/307060a0. [DOI] [PubMed] [Google Scholar]
  13. Evans L., Mitchison T., Kirschner M. Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol. 1985 Apr;100(4):1185–1191. doi: 10.1083/jcb.100.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Job D., Pabion M., Margolis R. L. Generation of microtubule stability subclasses by microtubule-associated proteins: implications for the microtubule "dynamic instability" model. J Cell Biol. 1985 Nov;101(5 Pt 1):1680–1689. doi: 10.1083/jcb.101.5.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Linck R. W., Langevin G. L. Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly. J Cell Biol. 1981 May;89(2):323–337. doi: 10.1083/jcb.89.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mandelkow E. M., Mandelkow E., Milligan R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol. 1991 Sep;114(5):977–991. doi: 10.1083/jcb.114.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McEwen B., Edelstein S. J. Evidence for a mixed lattice in microtubules reassembled in vitro. J Mol Biol. 1980 May 15;139(2):123–145. doi: 10.1016/0022-2836(80)90300-9. [DOI] [PubMed] [Google Scholar]
  18. Mogensen M. M., Tucker J. B. Evidence for microtubule nucleation at plasma membrane-associated sites in Drosophila. J Cell Sci. 1987 Aug;88(Pt 1):95–107. doi: 10.1242/jcs.88.1.95. [DOI] [PubMed] [Google Scholar]
  19. Mogensen M. M., Tucker J. B. Taxol influences control of protofilament number at microtubule-nucleating sites in Drosophila. J Cell Sci. 1990 Sep;97(Pt 1):101–107. doi: 10.1242/jcs.97.1.101. [DOI] [PubMed] [Google Scholar]
  20. Nagano T., Suzuki F. Microtubules with 15 subunits in cockroach epidermal cells. J Cell Biol. 1975 Jan;64(1):242–245. doi: 10.1083/jcb.64.1.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. O'Brien E. T., Salmon E. D., Walker R. A., Erickson H. P. Effects of magnesium on the dynamic instability of individual microtubules. Biochemistry. 1990 Jul 17;29(28):6648–6656. doi: 10.1021/bi00480a014. [DOI] [PubMed] [Google Scholar]
  22. Peterson G. L. Review of the Folin phenol protein quantitation method of Lowry, Rosebrough, Farr and Randall. Anal Biochem. 1979 Dec;100(2):201–220. doi: 10.1016/0003-2697(79)90222-7. [DOI] [PubMed] [Google Scholar]
  23. Pierson G. B., Burton P. R., Himes R. H. Alterations in number of protofilaments in microtubules assembled in vitro. J Cell Biol. 1978 Jan;76(1):223–228. doi: 10.1083/jcb.76.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rothwell S. W., Grasser W. A., Murphy D. B. End-to-end annealing of microtubules in vitro. J Cell Biol. 1986 Feb;102(2):619–627. doi: 10.1083/jcb.102.2.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Saito K., Hama K. Structural diversity of microtubules in the supporting cells of the sensory epithelium of guinea pig organ of Corti. J Electron Microsc (Tokyo) 1982;31(3):278–281. [PubMed] [Google Scholar]
  26. Savage C., Hamelin M., Culotti J. G., Coulson A., Albertson D. G., Chalfie M. mec-7 is a beta-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 1989 Jun;3(6):870–881. doi: 10.1101/gad.3.6.870. [DOI] [PubMed] [Google Scholar]
  27. Scheele R. B., Bergen L. G., Borisy G. G. Control of the structural fidelity of microtubules by initiation sites. J Mol Biol. 1982 Jan 25;154(3):485–500. doi: 10.1016/s0022-2836(82)80008-9. [DOI] [PubMed] [Google Scholar]
  28. Stewart M., Vigers G. Electron microscopy of frozen-hydrated biological material. Nature. 1986 Feb 20;319(6055):631–636. doi: 10.1038/319631a0. [DOI] [PubMed] [Google Scholar]
  29. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tucker J. B., Mathews S. A., Hendry K. A., Mackie J. B., Roche D. L. Spindle microtubule differentiation and deployment during micronuclear mitosis in Paramecium. J Cell Biol. 1985 Nov;101(5 Pt 1):1966–1976. doi: 10.1083/jcb.101.5.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Verde F., Labbé J. C., Dorée M., Karsenti E. Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs. Nature. 1990 Jan 18;343(6255):233–238. doi: 10.1038/343233a0. [DOI] [PubMed] [Google Scholar]
  32. Wade R. H., Chrétien D., Job D. Characterization of microtubule protofilament numbers. How does the surface lattice accommodate? J Mol Biol. 1990 Apr 20;212(4):775–786. doi: 10.1016/0022-2836(90)90236-F. [DOI] [PubMed] [Google Scholar]
  33. Xu Z., Afzelius B. A. Early changes in the substructure of the marginal bundle in human blood platelets responding to adenosine diphosphate. J Ultrastruct Mol Struct Res. 1988 Jun;99(3):254–260. doi: 10.1016/0889-1605(88)90069-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES