Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jun 2;117(6):1231–1239. doi: 10.1083/jcb.117.6.1231

Release of myosin II from the membrane-cytoskeleton of Dictyostelium discoideum mediated by heavy-chain phosphorylation at the foci within the cortical actin network

PMCID: PMC2289499  PMID: 1607385

Abstract

Membrane-cytoskeletons were prepared from Dictyostelium amebas, and networks of actin and myosin II filaments were visualized on the exposed cytoplasmic surfaces of the cell membranes by fluorescence staining (Yumura, S., and T. Kitanishi-Yumura. 1990. Cell Struct. Funct. 15:355-364). Addition of ATP caused contraction of the cytoskeleton with aggregation of part of actin into several foci within the network, but most of myosin II was released via the foci. However, in the presence of 10 mM MgCl2, which stabilized myosin II filaments, myosin II remained at the foci. Ultrastructural examination revealed that, after contraction, only traces of monomeric myosin II remained at the foci. By contrast, myosin II filaments remained in the foci in the presence of 10 mM MgCl2. These observations suggest that myosin II was released not in a filamentous form but in a monomeric form. Using [gamma 32P]ATP, we found that the heavy chains of myosin II released from membrane-cytoskeletons were phosphorylated, and this phosphorylation resulted in disassembly of myosin filaments. Using ITP (a substrate for myosin II ATPase) and/or ATP gamma S (a substrate for myosin II heavy-chain kinase [MHCK]), we demonstrated that phosphorylation of myosin heavy chains occurred at the foci within the actin network, a result that suggests that MHCK was localized at the foci. These results together indicate that, during contraction, the heavy chains of myosin II that have moved toward the foci within the actin network are phosphorylated by a specific MHCK, with the resultant disassembly of filaments which are finally released from membrane- cytoskeletons. This series of reactions could represent the mechanism for the relocation of myosin II from the cortical region to the endoplasm.

Full Text

The Full Text of this article is available as a PDF (2.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berlot C. H., Devreotes P. N., Spudich J. A. Chemoattractant-elicited increases in Dictyostelium myosin phosphorylation are due to changes in myosin localization and increases in kinase activity. J Biol Chem. 1987 Mar 15;262(8):3918–3926. [PubMed] [Google Scholar]
  2. Berlot C. H., Spudich J. A., Devreotes P. N. Chemoattractant-elicited increases in myosin phosphorylation in Dictyostelium. Cell. 1985 Nov;43(1):307–314. doi: 10.1016/0092-8674(85)90036-4. [DOI] [PubMed] [Google Scholar]
  3. Clarke M., Baron A. Myosin filaments in cytoskeletons of Dictyostelium amoebae. Cell Motil Cytoskeleton. 1987;7(4):293–303. doi: 10.1002/cm.970070402. [DOI] [PubMed] [Google Scholar]
  4. Clarke M., Schatten G., Mazia D., Spudich J. A. Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1975 May;72(5):1758–1762. doi: 10.1073/pnas.72.5.1758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Côte G. P., Bukiejko U. Purification and characterization of a myosin heavy chain kinase from Dictyostelium discoideum. J Biol Chem. 1987 Jan 25;262(3):1065–1072. [PubMed] [Google Scholar]
  6. Egelhoff T. T., Brown S. S., Spudich J. A. Spatial and temporal control of nonmuscle myosin localization: identification of a domain that is necessary for myosin filament disassembly in vivo. J Cell Biol. 1991 Feb;112(4):677–688. doi: 10.1083/jcb.112.4.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox J. E., Phillips D. R. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem. 1982 Apr 25;257(8):4120–4126. [PubMed] [Google Scholar]
  8. Futrelle R. P., Traut J., McKee W. G. Cell behavior in Dictyostelium discoideum: preaggregation response to localized cyclic AMP pulses. J Cell Biol. 1982 Mar;92(3):807–821. doi: 10.1083/jcb.92.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Griffith L. M., Downs S. M., Spudich J. A. Myosin light chain kinase and myosin light chain phosphatase from Dictyostelium: effects of reversible phosphorylation on myosin structure and function. J Cell Biol. 1987 May;104(5):1309–1323. doi: 10.1083/jcb.104.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jacobson B. S. Actin binding to the cytoplasmic surface of the plasma membrane isolated from Dictyostelium discoideum. Biochem Biophys Res Commun. 1980 Dec 31;97(4):1493–1498. doi: 10.1016/s0006-291x(80)80034-9. [DOI] [PubMed] [Google Scholar]
  11. Kitanishi-Yumura T., Fukui Y. Actomyosin organization during cytokinesis: reversible translocation and differential redistribution in Dictyostelium. Cell Motil Cytoskeleton. 1989;12(2):78–89. doi: 10.1002/cm.970120203. [DOI] [PubMed] [Google Scholar]
  12. Kuczmarski E. R., Pagone J. Myosin specific phosphatases isolated from Dictyostelium discoideum. J Muscle Res Cell Motil. 1986 Dec;7(6):510–516. doi: 10.1007/BF01753567. [DOI] [PubMed] [Google Scholar]
  13. Kuczmarski E. R., Palivos L., Aguado C., Yao Z. L. Stopped-flow measurement of cytoskeletal contraction: Dictyostelium myosin II is specifically required for contraction of amoeba cytoskeletons. J Cell Biol. 1991 Sep;114(6):1191–1199. doi: 10.1083/jcb.114.6.1191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuczmarski E. R. Partial purification of two myosin heavy chain kinases from Dictyostelium discoideum. J Muscle Res Cell Motil. 1986 Dec;7(6):501–509. doi: 10.1007/BF01753566. [DOI] [PubMed] [Google Scholar]
  15. Kuczmarski E. R., Spudich J. A. Regulation of myosin self-assembly: phosphorylation of Dictyostelium heavy chain inhibits formation of thick filaments. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7292–7296. doi: 10.1073/pnas.77.12.7292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kuczmarski E. R., Tafuri S. R., Parysek L. M. Effect of heavy chain phosphorylation on the polymerization and structure of Dictyostelium myosin filaments. J Cell Biol. 1987 Dec;105(6 Pt 2):2989–2997. doi: 10.1083/jcb.105.6.2989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROBERTS N. R., LEINER K. Y., WU M. L., FARR A. L. The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem. 1954 Mar;207(1):1–17. [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Mahajan R. K., Vaughan K. T., Johns J. A., Pardee J. D. Actin filaments mediate Dictyostelium myosin assembly in vitro. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6161–6165. doi: 10.1073/pnas.86.16.6161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Maruta H., Baltes W., Dieter P., Marmé D., Gerisch G. Myosin heavy chain kinase inactivated by Ca2+/calmodulin from aggregating cells of Dictyostelium discoideum. EMBO J. 1983;2(4):535–542. doi: 10.1002/j.1460-2075.1983.tb01459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nachmias V. T., Fukui Y., Spudich J. A. Chemoattractant-elicited translocation of myosin in motile Dictyostelium. Cell Motil Cytoskeleton. 1989;13(3):158–169. doi: 10.1002/cm.970130304. [DOI] [PubMed] [Google Scholar]
  22. Nachmias V. T., Kavaler J., Jacubowitz S. Reversible association of myosin with the platelet cytoskeleton. Nature. 1985 Jan 3;313(5997):70–72. doi: 10.1038/313070a0. [DOI] [PubMed] [Google Scholar]
  23. Rahmsdorf H. J., Malchow D., Gerisch G. Cyclic AMP-induced phosphorylation in Dictyostelium of a polypeptide comigrating with myosin heavy chains. FEBS Lett. 1978 Apr 15;88(2):322–326. doi: 10.1016/0014-5793(78)80203-8. [DOI] [PubMed] [Google Scholar]
  24. Ravid S., Spudich J. A. Myosin heavy chain kinase from developed Dictyostelium cells. Purification and characterization. J Biol Chem. 1989 Sep 5;264(25):15144–15150. [PubMed] [Google Scholar]
  25. Reines D., Clarke M. Immunochemical analysis of the supramolecular structure of myosin in contractile cytoskeletons of Dictyostelium amoebae. J Biol Chem. 1985 Nov 15;260(26):14248–14254. [PubMed] [Google Scholar]
  26. Spudich J. A. Biochemical and structural studies of actomyosin-like proteins from non-muscle cells. II. Purification, properties, and membrane association of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1974 Sep 25;249(18):6013–6020. [PubMed] [Google Scholar]
  27. Vaillancourt J. P., Lyons C., Côté G. P. Identification of two phosphorylated threonines in the tail region of Dictyostelium myosin II. J Biol Chem. 1988 Jul 25;263(21):10082–10087. [PubMed] [Google Scholar]
  28. Yumura S., Fukui Y. Reversible cyclic AMP-dependent change in distribution of myosin thick filaments in Dictyostelium. Nature. 1985 Mar 14;314(6007):194–196. doi: 10.1038/314194a0. [DOI] [PubMed] [Google Scholar]
  29. Yumura S., Kitanishi-Yumura T. Fluorescence-mediated visualization of actin and myosin filaments in the contractile membrane-cytoskeleton complex of Dictyostelium discoideum. Cell Struct Funct. 1990 Dec;15(6):355–364. doi: 10.1247/csf.15.355. [DOI] [PubMed] [Google Scholar]
  30. Yumura S., Kitanishi-Yumura T. Immunoelectron microscopic studies of the ultrastructure of myosin filaments in Dictyostelium discoideum. Cell Struct Funct. 1990 Dec;15(6):343–354. doi: 10.1247/csf.15.343. [DOI] [PubMed] [Google Scholar]
  31. Yumura S., Mori H., Fukui Y. Localization of actin and myosin for the study of ameboid movement in Dictyostelium using improved immunofluorescence. J Cell Biol. 1984 Sep;99(3):894–899. doi: 10.1083/jcb.99.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES