Abstract
After Listeria is phagocytosed by a macrophage, it dissolves the phagosomal membrane and enters the cytoplasm. The Listeria then nucleates actin filaments from its surface. These actin filaments rearrange to form a tail with which the Listeria moves to the macrophage surface as a prelude to spreading. Since individual actin filaments appear to remain in their same positions in the tail in vitro after extraction with detergent, the component filaments must be cross- bridged together. From careful examination of the distribution of actin filaments attached to the surface of Listeria and in the tail, and the fact that during and immediately after division filaments are not nucleated from the new wall formed during septation, we show how a cloud of actin filaments becomes rearranged into a tail simply by the mechanics of growth. From lineage studies we can relate the length of the tail to the age of the surface of Listeria and make predictions as to the ratio of Listeria with varying tail lengths at a particular time after the initial infection. Since we know that division occurs about every 50 min, after 4 h we would predict that if we started with one Listeria in a macrophage, 16 bacteria would be found, two with long tails, two with medium tails, four with tiny tails, and eight with no tails or a ratio of 1:1:2:4. We measured the lengths of the tails on Listeria 4 h after infection in serial sections and confirmed this prediction. By decorating the actin filaments that make up the tail of Listeria with subfragment 1 of myosin we find (a) that the filaments are indeed short (maximally 0.3 microns in length); (b) that the filament length is approximately the same at the tip and the base of the tail; and (c) that the polarity of these filaments is inappropriate for myosin to be responsible or to facilitate movement through the cytoplasm, but the polarity insures that the bacterium will be located at the tip of a pseudopod, a location that is essential for spreading to an adjacent cell. Putting all this information together we can begin to unravel the problem of how the Listeria forms the cytoskeleton and what is the biological purpose of this tail. Two functions are apparent: movement and pseudopod formation.
Full Text
The Full Text of this article is available as a PDF (5.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bishop D. K., Hinrichs D. J. Adoptive transfer of immunity to Listeria monocytogenes. The influence of in vitro stimulation on lymphocyte subset requirements. J Immunol. 1987 Sep 15;139(6):2005–2009. [PubMed] [Google Scholar]
- COLE R. M., HAHN J. J. Cell wall replication in Streptococcus pyogenes. Science. 1962 Mar 2;135(3505):722–724. doi: 10.1126/science.135.3505.722. [DOI] [PubMed] [Google Scholar]
- Coluccio L. M., Bretscher A. Calcium-regulated cooperative binding of the microvillar 110K-calmodulin complex to F-actin: formation of decorated filaments. J Cell Biol. 1987 Jul;105(1):325–333. doi: 10.1083/jcb.105.1.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coluccio L. M., Bretscher A. Mapping of the microvillar 110K-calmodulin complex: calmodulin-associated or -free fragments of the 110-kD polypeptide bind F-actin and retain ATPase activity. J Cell Biol. 1988 Feb;106(2):367–373. doi: 10.1083/jcb.106.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dabiri G. A., Sanger J. M., Portnoy D. A., Southwick F. S. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6068–6072. doi: 10.1073/pnas.87.16.6068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Margossian S. S., Lowey S. Substructure of the myosin molecule. 3. Preparation of single-headed derivatives of myosin. J Mol Biol. 1973 Mar 5;74(3):301–311. doi: 10.1016/0022-2836(73)90375-6. [DOI] [PubMed] [Google Scholar]
- Maupin-Szamier P., Pollard T. D. Actin filament destruction by osmium tetroxide. J Cell Biol. 1978 Jun;77(3):837–852. doi: 10.1083/jcb.77.3.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Conzelman K. A., Coleman T. R., Heuser J. E., Sheetz M. P. Characterization of intestinal microvillar membrane disks: detergent-resistant membrane sheets enriched in associated brush border myosin I (110K-calmodulin). J Cell Biol. 1989 Sep;109(3):1153–1161. doi: 10.1083/jcb.109.3.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mooseker M. S., Tilney L. G. Organization of an actin filament-membrane complex. Filament polarity and membrane attachment in the microvilli of intestinal epithelial cells. J Cell Biol. 1975 Dec;67(3):725–743. doi: 10.1083/jcb.67.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polley H. M., Schlaeppi J. M., Karamata D. Localised insertion of new cell wall in Bacillus subtilis. Nature. 1978 Jul 20;274(5668):264–266. doi: 10.1038/274264a0. [DOI] [PubMed] [Google Scholar]
- Portnoy D. A., Jacks P. S., Hinrichs D. J. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med. 1988 Apr 1;167(4):1459–1471. doi: 10.1084/jem.167.4.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ralph P., Prichard J., Cohn M. Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J Immunol. 1975 Feb;114(2 Pt 2):898–905. [PubMed] [Google Scholar]
- Sun A. N., Camilli A., Portnoy D. A. Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun. 1990 Nov;58(11):3770–3778. doi: 10.1128/iai.58.11.3770-3778.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Connelly P. S., Portnoy D. A. Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes. J Cell Biol. 1990 Dec;111(6 Pt 2):2979–2988. doi: 10.1083/jcb.111.6.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., DeRosier D. J., Weber A., Tilney M. S. How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, actin filament polarity, filament assembly, and evidence for a pointed end capper. J Cell Biol. 1992 Jul;118(1):83–93. doi: 10.1083/jcb.118.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Derosier D. J., Mulroy M. J. The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol. 1980 Jul;86(1):244–259. doi: 10.1083/jcb.86.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tilney L. G., Portnoy D. A. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol. 1989 Oct;109(4 Pt 1):1597–1608. doi: 10.1083/jcb.109.4.1597. [DOI] [PMC free article] [PubMed] [Google Scholar]