Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Aug 2;118(4):865–875. doi: 10.1083/jcb.118.4.865

Tubulin protofilaments and kinesin-dependent motility

PMCID: PMC2289568  PMID: 1500429

Abstract

Microtubules are built of tubulin subunits assembled into hollow cylinders which consist of parallel protofilaments. Thus, motor molecules interacting with a microtubule could do so either with one or several tubulin subunits. This makes it difficult to determine the structural requirements for the interaction. One way to approach the problem is to alter the surface lattice. This can be done in several ways. Proto-filaments can be exposed on their inside (C-tubules or "sheets"), they can be made antiparallel (zinc sheets), or they can be rolled up (duplex tubules). We have exploited this polymorphism to study how the motor protein kinesin attached to a glass surface interacts and moves the various tubulin assemblies. Microtubules glide over the surface along straight paths and with uniform velocities. In the case of C-tubules, approximately 40% glide similarly to microtubules, but a major fraction do not glide at all. This indicates (a) that a full cylindrical closure is not necessary for movement, and (b) that the inside surface of microtubules does not support gliding. With zinc sheets, up to 70% of the polymers move, but the movement is discontinuous, has a reduced speed, and follows along a curved path. Since zinc sheets have protofilaments alternating in orientation and polarity, this result suggests that in principle a single protofilament can produce movement, even when its neighbors cannot. Duplex microtubules do not move because they are covered with protofilaments coiled inside out, thus preventing the interaction with kinesin. The data can be explained by assuming that the outside of one protofilament represents the minimal track for kinesin, but smooth gliding requires several parallel protofilaments. Finally, we followed the motion of kinesin-coated microbeads on sea-urchin sperm flagella, from the flagellar outer doublet microtubules to the singlet microtubule tips extending from the A-tubules. No change in behavior was detected during the transition. This indicates that even if these microtubules differ in surface lattice, this does not affect the motility.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C., Borisy G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol. 1974 Dec 5;90(2):381–402. doi: 10.1016/0022-2836(74)90381-7. [DOI] [PubMed] [Google Scholar]
  2. Allen R. D. New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu Rev Biophys Biophys Chem. 1985;14:265–290. doi: 10.1146/annurev.bb.14.060185.001405. [DOI] [PubMed] [Google Scholar]
  3. Amos L. A., Baker T. S. The three-dimensional structure of tubulin protofilaments. Nature. 1979 Jun 14;279(5714):607–612. doi: 10.1038/279607a0. [DOI] [PubMed] [Google Scholar]
  4. Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
  5. Baker T. S., Amos L. A. Structure of the tubulin dimer in zinc-induced sheets. J Mol Biol. 1978 Jul 25;123(1):89–106. doi: 10.1016/0022-2836(78)90378-9. [DOI] [PubMed] [Google Scholar]
  6. Bloom G. S., Wagner M. C., Pfister K. K., Brady S. T. Native structure and physical properties of bovine brain kinesin and identification of the ATP-binding subunit polypeptide. Biochemistry. 1988 May 3;27(9):3409–3416. doi: 10.1021/bi00409a043. [DOI] [PubMed] [Google Scholar]
  7. Brady S. T. A novel brain ATPase with properties expected for the fast axonal transport motor. Nature. 1985 Sep 5;317(6032):73–75. doi: 10.1038/317073a0. [DOI] [PubMed] [Google Scholar]
  8. Cohn S. A., Ingold A. L., Scholey J. M. Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin. Nature. 1987 Jul 9;328(6126):160–163. doi: 10.1038/328160a0. [DOI] [PubMed] [Google Scholar]
  9. Crepeau R. H., McEwen B., Dykes G., Edelstein S. J. Structural studies on porcine brain tubulin in extended sheets. J Mol Biol. 1977 Oct 25;116(2):301–315. doi: 10.1016/0022-2836(77)90218-2. [DOI] [PubMed] [Google Scholar]
  10. Erickson H. P. Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol. 1974 Jan;60(1):153–167. doi: 10.1083/jcb.60.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erickson H. P., Voter W. A. Polycation-induced assembly of purified tubulin. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2813–2817. doi: 10.1073/pnas.73.8.2813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  13. Gilbert S. P., Allen R. D., Sloboda R. D. Translocation of vesicles from squid axoplasm on flagellar microtubules. Nature. 1985 May 16;315(6016):245–248. doi: 10.1038/315245a0. [DOI] [PubMed] [Google Scholar]
  14. Goldsmith M., Connolly J. A., Kumar N., Wu J., Yarbrough L. R., van der Kooy D. Conserved beta-tubulin binding domain for the microtubule-associated motors underlying sperm motility and fast axonal transport. Cell Motil Cytoskeleton. 1991;20(3):249–262. doi: 10.1002/cm.970200308. [DOI] [PubMed] [Google Scholar]
  15. Goldstein D. A. Calculation of the concentrations of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands. Biophys J. 1979 May;26(2):235–242. doi: 10.1016/S0006-3495(79)85247-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Goldstein L. S. The kinesin superfamily: tails of functional redundancy. Trends Cell Biol. 1991 Oct;1(4):93–98. doi: 10.1016/0962-8924(91)90036-9. [DOI] [PubMed] [Google Scholar]
  17. Hackney D. D. Kinesin ATPase: rate-limiting ADP release. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6314–6318. doi: 10.1073/pnas.85.17.6314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Heins S., Song Y. H., Wille H., Mandelkow E., Mandelkow E. M. Effect of MAP2, MAP2c, and tau on kinesin-dependent microtubule motility. J Cell Sci Suppl. 1991;14:121–124. doi: 10.1242/jcs.1991.supplement_14.24. [DOI] [PubMed] [Google Scholar]
  19. Hirokawa N., Pfister K. K., Yorifuji H., Wagner M. C., Brady S. T., Bloom G. S. Submolecular domains of bovine brain kinesin identified by electron microscopy and monoclonal antibody decoration. Cell. 1989 Mar 10;56(5):867–878. doi: 10.1016/0092-8674(89)90691-0. [DOI] [PubMed] [Google Scholar]
  20. Howard J., Hudspeth A. J., Vale R. D. Movement of microtubules by single kinesin molecules. Nature. 1989 Nov 9;342(6246):154–158. doi: 10.1038/342154a0. [DOI] [PubMed] [Google Scholar]
  21. Ingold A. L., Cohn S. A., Scholey J. M. Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains. J Cell Biol. 1988 Dec;107(6 Pt 2):2657–2667. doi: 10.1083/jcb.107.6.2657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jacobs M., Bennett P. M., Dickens M. J. Duplex microtubule is a new form of tubulin assembly induced by polycations. Nature. 1975 Oct 23;257(5528):707–709. doi: 10.1038/257707a0. [DOI] [PubMed] [Google Scholar]
  23. Kamimura S., Kamiya R. High-frequency vibration in flagellar axonemes with amplitudes reflecting the size of tubulin. J Cell Biol. 1992 Mar;116(6):1443–1454. doi: 10.1083/jcb.116.6.1443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kuznetsov S. A., Gelfand V. I. Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8530–8534. doi: 10.1073/pnas.83.22.8530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kuznetsov S. A., Vaisberg Y. A., Rothwell S. W., Murphy D. B., Gelfand V. I. Isolation of a 45-kDa fragment from the kinesin heavy chain with enhanced ATPase and microtubule-binding activities. J Biol Chem. 1989 Jan 5;264(1):589–595. [PubMed] [Google Scholar]
  26. Larsson H., Wallin M., Edström A. Induction of a sheet polymer of tubulin by Zn2+. Exp Cell Res. 1976 Jun;100(1):104–110. doi: 10.1016/0014-4827(76)90332-3. [DOI] [PubMed] [Google Scholar]
  27. Linck R. W., Langevin G. L. Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly. J Cell Biol. 1981 May;89(2):323–337. doi: 10.1083/jcb.89.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mandelkow E. M., Herrmann M., Rühl U. Tubulin domains probed by limited proteolysis and subunit-specific antibodies. J Mol Biol. 1985 Sep 20;185(2):311–327. doi: 10.1016/0022-2836(85)90406-1. [DOI] [PubMed] [Google Scholar]
  29. Mandelkow E. M., Mandelkow E. Junctions between microtubule walls. J Mol Biol. 1979 Mar 25;129(1):135–148. doi: 10.1016/0022-2836(79)90064-0. [DOI] [PubMed] [Google Scholar]
  30. Mandelkow E. M., Mandelkow E., Milligan R. A. Microtubule dynamics and microtubule caps: a time-resolved cryo-electron microscopy study. J Cell Biol. 1991 Sep;114(5):977–991. doi: 10.1083/jcb.114.5.977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mandelkow E. M., Mandelkow E., Unwin N., Cohen C. Tubulin hoops. Nature. 1977 Feb 17;265(5595):655–657. doi: 10.1038/265655a0. [DOI] [PubMed] [Google Scholar]
  32. Mandelkow E. M., Schultheiss R., Rapp R., Müller M., Mandelkow E. On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness. J Cell Biol. 1986 Mar;102(3):1067–1073. doi: 10.1083/jcb.102.3.1067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. McDonald H. B., Stewart R. J., Goldstein L. S. The kinesin-like ncd protein of Drosophila is a minus end-directed microtubule motor. Cell. 1990 Dec 21;63(6):1159–1165. doi: 10.1016/0092-8674(90)90412-8. [DOI] [PubMed] [Google Scholar]
  34. McEwen B. F., Ceska T. A., Crepeau R. H., Edelstein S. J. Structural changes in tubulin sheets upon removal of microtubule-associated proteins. J Mol Biol. 1983 May 15;166(2):119–140. doi: 10.1016/s0022-2836(83)80002-3. [DOI] [PubMed] [Google Scholar]
  35. McEwen B., Edelstein S. J. Evidence for a mixed lattice in microtubules reassembled in vitro. J Mol Biol. 1980 May 15;139(2):123–145. doi: 10.1016/0022-2836(80)90300-9. [DOI] [PubMed] [Google Scholar]
  36. Paschal B. M., Obar R. A., Vallee R. B. Interaction of brain cytoplasmic dynein and MAP2 with a common sequence at the C terminus of tubulin. Nature. 1989 Nov 30;342(6249):569–572. doi: 10.1038/342569a0. [DOI] [PubMed] [Google Scholar]
  37. Paschal B. M., Vallee R. B. Retrograde transport by the microtubule-associated protein MAP 1C. Nature. 1987 Nov 12;330(6144):181–183. doi: 10.1038/330181a0. [DOI] [PubMed] [Google Scholar]
  38. Rodionov V. I., Gyoeva F. K., Kashina A. S., Kuznetsov S. A., Gelfand V. I. Microtubule-associated proteins and microtubule-based translocators have different binding sites on tubulin molecule. J Biol Chem. 1990 Apr 5;265(10):5702–5707. [PubMed] [Google Scholar]
  39. Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sawin K. E., Scholey J. M. Motor proteins in cell division. Trends Cell Biol. 1991 Nov;1(5):122–129. doi: 10.1016/0962-8924(91)90117-r. [DOI] [PubMed] [Google Scholar]
  41. Shimizu T., Furusawa K., Ohashi S., Toyoshima Y. Y., Okuno M., Malik F., Vale R. D. Nucleotide specificity of the enzymatic and motile activities of dynein, kinesin, and heavy meromyosin. J Cell Biol. 1991 Mar;112(6):1189–1197. doi: 10.1083/jcb.112.6.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Vale R. D. Intracellular transport using microtubule-based motors. Annu Rev Cell Biol. 1987;3:347–378. doi: 10.1146/annurev.cb.03.110187.002023. [DOI] [PubMed] [Google Scholar]
  43. Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Vallee R. B., Shpetner H. S. Motor proteins of cytoplasmic microtubules. Annu Rev Biochem. 1990;59:909–932. doi: 10.1146/annurev.bi.59.070190.004401. [DOI] [PubMed] [Google Scholar]
  45. Voter W. A., Erickson H. P. Tubulin rings: curved filaments with limited flexibility and two modes of association. J Supramol Struct. 1979;10(4):419–431. doi: 10.1002/jss.400100405. [DOI] [PubMed] [Google Scholar]
  46. Walker R. A., Salmon E. D., Endow S. A. The Drosophila claret segregation protein is a minus-end directed motor molecule. Nature. 1990 Oct 25;347(6295):780–782. doi: 10.1038/347780a0. [DOI] [PubMed] [Google Scholar]
  47. Yang J. T., Saxton W. M., Stewart R. J., Raff E. C., Goldstein L. S. Evidence that the head of kinesin is sufficient for force generation and motility in vitro. Science. 1990 Jul 6;249(4964):42–47. doi: 10.1126/science.2142332. [DOI] [PubMed] [Google Scholar]
  48. von Massow A., Mandelkow E. M., Mandelkow E. Interaction between kinesin, microtubules, and microtubule-associated protein 2. Cell Motil Cytoskeleton. 1989;14(4):562–571. doi: 10.1002/cm.970140413. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES