Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Aug 2;118(4):911–928. doi: 10.1083/jcb.118.4.911

Distinct cellular expression pattern of annexins in Hydra vulgaris

PMCID: PMC2289573  PMID: 1500430

Abstract

The annexins are a structurally related family of Ca2+ and phospholipid binding proteins whose function has not been clearly defined. Further investigations of annexin function may be enhanced by studying simpler organisms that express fewer annexin gene products. We previously characterized annexin XII from the freshwater cnidarian Hydra vulgaris (Schlaepfer, D. D., D. A. Fisher, M. E. Brandt, H. R. Bode, J. Jones, and H. T. Haigler. 1992. J. Biol. Chem. 267:9529-9539). In this report, we detected one other hydra annexin (40 kD) by screening hydra cell extracts with antibodies raised against peptides from highly conserved regions of known annexins. The 40-kD protein was expressed at less than 1% of annexin XII levels. These biochemical studies indicate that hydra contain a very limited number of annexin gene products. The cellular hydra annexin distribution was analyzed by indirect immunofluorescence. Using affinity-purified antibodies to annexin XII, the epithelial battery cells were stained throughout the tentacle. A lower level of annexin XII staining was detected in peduncle region epithelial cells. No other cell types showed detectable annexin XII staining. The anti- peptide antibody that specifically detected the 40-kD hydra annexin, maximally stained the cytoplasm of nematocytes. The immunofluorescent results showed that annexin XII and the 40-kD annexin were not co- expressed in the same cells. Since the hydra annexins localized to specific subsets of the total hydra cell types, it is likely that these proteins perform specialized biological roles, and not general "housekeeping" functions which are part of the essential molecular machinery of all cells.

Full Text

The Full Text of this article is available as a PDF (7.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali S. M., Geisow M. J., Burgoyne R. D. A role for calpactin in calcium-dependent exocytosis in adrenal chromaffin cells. Nature. 1989 Jul 27;340(6231):313–315. doi: 10.1038/340313a0. [DOI] [PubMed] [Google Scholar]
  2. Bode H. R., Flick K. M. Distribution and dynamics of nematocyte populations in Hydra attenuata. J Cell Sci. 1976 Jun;21(1):15–34. doi: 10.1242/jcs.21.1.15. [DOI] [PubMed] [Google Scholar]
  3. Bode H. R., Gee L. W., Chow M. A. Neuron differentiation in hydra involves dividing intermediates. Dev Biol. 1990 Jun;139(2):231–243. doi: 10.1016/0012-1606(90)90292-q. [DOI] [PubMed] [Google Scholar]
  4. Bode H. R., Heimfeld S., Chow M. A., Huang L. W. Gland cells arise by differentiation from interstitial cells in Hydra attenuata. Dev Biol. 1987 Aug;122(2):577–585. doi: 10.1016/0012-1606(87)90321-6. [DOI] [PubMed] [Google Scholar]
  5. Bode H., Dunne J., Heimfeld S., Huang L., Javois L., Koizumi O., Westerfield J., Yaross M. Transdifferentiation occurs continuously in adult hydra. Curr Top Dev Biol. 1986;20:257–280. doi: 10.1016/s0070-2153(08)60668-7. [DOI] [PubMed] [Google Scholar]
  6. Bode P. M., Awad T. A., Koizumi O., Nakashima Y., Grimmelikhuijzen C. J., Bode H. R. Development of the two-part pattern during regeneration of the head in hydra. Development. 1988 Jan;102(1):223–235. doi: 10.1242/dev.102.1.223. [DOI] [PubMed] [Google Scholar]
  7. Bosch T. C., Unger T. F., Fisher D. A., Steele R. E. Structure and expression of STK, a src-related gene in the simple metazoan Hydra attenuata. Mol Cell Biol. 1989 Oct;9(10):4141–4151. doi: 10.1128/mcb.9.10.4141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burns A. L., Magendzo K., Shirvan A., Srivastava M., Rojas E., Alijani M. R., Pollard H. B. Calcium channel activity of purified human synexin and structure of the human synexin gene. Proc Natl Acad Sci U S A. 1989 May;86(10):3798–3802. doi: 10.1073/pnas.86.10.3798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campbell R. D., David C. N. Cell cycle kinetics and development of Hydra attenuata. II. Interstitial cells. J Cell Sci. 1974 Nov;16(2):349–358. doi: 10.1242/jcs.16.2.349. [DOI] [PubMed] [Google Scholar]
  10. Campbell R. D. Elimination by Hydra interstitial and nerve cells by means of colchicine. J Cell Sci. 1976 Jun;21(1):1–13. doi: 10.1242/jcs.21.1.1. [DOI] [PubMed] [Google Scholar]
  11. Crompton M. R., Moss S. E., Crumpton M. J. Diversity in the lipocortin/calpactin family. Cell. 1988 Oct 7;55(1):1–3. doi: 10.1016/0092-8674(88)90002-5. [DOI] [PubMed] [Google Scholar]
  12. Crompton M. R., Owens R. J., Totty N. F., Moss S. E., Waterfield M. D., Crumpton M. J. Primary structure of the human, membrane-associated Ca2+-binding protein p68 a novel member of a protein family. EMBO J. 1988 Jan;7(1):21–27. doi: 10.1002/j.1460-2075.1988.tb02779.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Crumpton M. J., Dedman J. R. Protein terminology tangle. Nature. 1990 May 17;345(6272):212–212. doi: 10.1038/345212a0. [DOI] [PubMed] [Google Scholar]
  14. DIEHL F. A., BURNETT A. L. THE ROLE OF INTERSTITIAL CELLS IN THE MAINTENANCE OF HYDRA. I. SPECIFIC DESTRUCTION OF INTERSTITIAL CELLS IN NORMAL, ASEXUAL, NON-BUDDING ANIMALS. J Exp Zool. 1964 Mar;155:253–259. doi: 10.1002/jez.1401550212. [DOI] [PubMed] [Google Scholar]
  15. David C. N., Campbell R. D. Cell cycle kinetics and development of Hydra attenuata. I. Epithelial cells. J Cell Sci. 1972 Sep;11(2):557–568. doi: 10.1242/jcs.11.2.557. [DOI] [PubMed] [Google Scholar]
  16. David C. N., Gierer A. Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J Cell Sci. 1974 Nov;16(2):359–375. doi: 10.1242/jcs.16.2.359. [DOI] [PubMed] [Google Scholar]
  17. De B. K., Misono K. S., Lukas T. J., Mroczkowski B., Cohen S. A calcium-dependent 35-kilodalton substrate for epidermal growth factor receptor/kinase isolated from normal tissue. J Biol Chem. 1986 Oct 15;261(29):13784–13792. [PubMed] [Google Scholar]
  18. Drust D. S., Creutz C. E. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature. 1988 Jan 7;331(6151):88–91. doi: 10.1038/331088a0. [DOI] [PubMed] [Google Scholar]
  19. Döring V., Schleicher M., Noegel A. A. Dictyostelium annexin VII (synexin). cDNA sequence and isolation of a gene disruption mutant. J Biol Chem. 1991 Sep 15;266(26):17509–17515. [PubMed] [Google Scholar]
  20. Dübel S., Hoffmeister S. A., Schaller H. C. Differentiation pathways of ectodermal epithelial cells in hydra. Differentiation. 1987;35(3):181–189. doi: 10.1111/j.1432-0436.1987.tb00167.x. [DOI] [PubMed] [Google Scholar]
  21. Dübel S., Schaller H. C. Terminal differentiation of ectodermal epithelial stem cells of Hydra can occur in G2 without requiring mitosis or S phase. J Cell Biol. 1990 Apr;110(4):939–945. doi: 10.1083/jcb.110.4.939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Dübel S. Terminal differentiation of head- and foot-specific epithelial cells occurs at the same location in Hydra tissue without polarity. Dev Biol. 1990 Mar;138(1):243–245. doi: 10.1016/0012-1606(90)90194-n. [DOI] [PubMed] [Google Scholar]
  23. Fisher D. A., Bode H. R. Nucleotide sequence of an actin-encoding gene from Hydra attenuata: structural characteristics and evolutionary implications. Gene. 1989 Dec 7;84(1):55–64. doi: 10.1016/0378-1119(89)90139-x. [DOI] [PubMed] [Google Scholar]
  24. Fraser S. E., Green C. R., Bode H. R., Gilula N. B. Selective disruption of gap junctional communication interferes with a patterning process in hydra. Science. 1987 Jul 3;237(4810):49–55. doi: 10.1126/science.3037697. [DOI] [PubMed] [Google Scholar]
  25. Geisow M. J., Walker J. H., Boustead C., Taylor W. Annexins--new family of Ca2+-regulated-phospholipid binding protein. Biosci Rep. 1987 Apr;7(4):289–298. doi: 10.1007/BF01121450. [DOI] [PubMed] [Google Scholar]
  26. Gerke V. Consensus peptide antibodies reveal a widespread occurrence of Ca2+/lipid-binding proteins of the annexin family. FEBS Lett. 1989 Dec 4;258(2):259–262. doi: 10.1016/0014-5793(89)81668-0. [DOI] [PubMed] [Google Scholar]
  27. Gerke V. Identification of a homologue for annexin VII (synexin) in Dictyostelium discoideum. J Biol Chem. 1991 Jan 25;266(3):1697–1700. [PubMed] [Google Scholar]
  28. Gerke V., Weber K. Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 1984 Jan;3(1):227–233. doi: 10.1002/j.1460-2075.1984.tb01789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Glenney J. R., Jr, Tack B., Powell M. A. Calpactins: two distinct Ca++-regulated phospholipid- and actin-binding proteins isolated from lung and placenta. J Cell Biol. 1987 Mar;104(3):503–511. doi: 10.1083/jcb.104.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Gould K. L., Cooper J. A., Hunter T. The 46,000-dalton tyrosine protein kinase substrate is widespread, whereas the 36,000-dalton substrate is only expressed at high levels in certain rodent tissues. J Cell Biol. 1984 Feb;98(2):487–497. doi: 10.1083/jcb.98.2.487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Greenwood M., Tsang A. Sequence and expression of annexin VII of Dictyostelium discoideum. Biochim Biophys Acta. 1991 Mar 26;1088(3):429–432. doi: 10.1016/0167-4781(91)90137-b. [DOI] [PubMed] [Google Scholar]
  32. Grundmann U., Abel K. J., Bohn H., Löbermann H., Lottspeich F., Küpper H. Characterization of cDNA encoding human placental anticoagulant protein (PP4): homology with the lipocortin family. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3708–3712. doi: 10.1073/pnas.85.11.3708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Haigler H. T., Schlaepfer D. D., Burgess W. H. Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J Biol Chem. 1987 May 15;262(14):6921–6930. [PubMed] [Google Scholar]
  34. Hauptmann R., Maurer-Fogy I., Krystek E., Bodo G., Andree H., Reutelingsperger C. P. Vascular anticoagulant beta: a novel human Ca2+/phospholipid binding protein that inhibits coagulation and phospholipase A2 activity. Its molecular cloning, expression and comparison with VAC-alpha. Eur J Biochem. 1989 Oct 20;185(1):63–71. doi: 10.1111/j.1432-1033.1989.tb15082.x. [DOI] [PubMed] [Google Scholar]
  35. Huang K. S., Wallner B. P., Mattaliano R. J., Tizard R., Burne C., Frey A., Hession C., McGray P., Sinclair L. K., Chow E. P. Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase. Cell. 1986 Jul 18;46(2):191–199. doi: 10.1016/0092-8674(86)90736-1. [DOI] [PubMed] [Google Scholar]
  36. Isacke C. M., Lindberg R. A., Hunter T. Synthesis of p36 and p35 is increased when U-937 cells differentiate in culture but expression is not inducible by glucocorticoids. Mol Cell Biol. 1989 Jan;9(1):232–240. doi: 10.1128/mcb.9.1.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Johnston P. A., Perin M. S., Reynolds G. A., Wasserman S. A., Südhof T. C. Two novel annexins from Drosophila melanogaster. Cloning, characterization, and differential expression in development. J Biol Chem. 1990 Jul 5;265(19):11382–11388. [PubMed] [Google Scholar]
  38. Kaetzel M. A., Dedman J. R. Affinity-purified site-directed antibody recognizes the entire annexin protein family. Biochem Biophys Res Commun. 1989 May 15;160(3):1233–1237. doi: 10.1016/s0006-291x(89)80135-4. [DOI] [PubMed] [Google Scholar]
  39. Kaetzel M. A., Hazarika P., Dedman J. R. Differential tissue expression of three 35-kDa annexin calcium-dependent phospholipid-binding proteins. J Biol Chem. 1989 Aug 25;264(24):14463–14470. [PubMed] [Google Scholar]
  40. Kaplan R., Jaye M., Burgess W. H., Schlaepfer D. D., Haigler H. T. Cloning and expression of cDNA for human endonexin II, a Ca2+ and phospholipid binding protein. J Biol Chem. 1988 Jun 15;263(17):8037–8043. [PubMed] [Google Scholar]
  41. Koizumi O., Bode H. R. Plasticity in the nervous system of adult hydra. I. The position-dependent expression of FMRFamide-like immunoreactivity. Dev Biol. 1986 Aug;116(2):407–421. doi: 10.1016/0012-1606(86)90142-9. [DOI] [PubMed] [Google Scholar]
  42. Lenhoff H. M., Brown R. D. Mass culture of hydra: an improved method and its application to other aquatic invertebrates. Lab Anim. 1970 Apr;4(1):139–154. doi: 10.1258/002367770781036463. [DOI] [PubMed] [Google Scholar]
  43. Littlefield C. L. Germ cells in Hydra oligactis males. I. Isolation of a subpopulation of interstitial cells that is developmentally restricted to sperm production. Dev Biol. 1985 Nov;112(1):185–193. doi: 10.1016/0012-1606(85)90132-0. [DOI] [PubMed] [Google Scholar]
  44. Müller W. A. Ectopic head and foot formation in Hydra: diacylglycerol-induced increase in positional value and assistance of the head in foot formation. Differentiation. 1990 Feb;42(3):131–143. doi: 10.1111/j.1432-0436.1990.tb00754.x. [DOI] [PubMed] [Google Scholar]
  45. Nakata T., Sobue K., Hirokawa N. Conformational change and localization of calpactin I complex involved in exocytosis as revealed by quick-freeze, deep-etch electron microscopy and immunocytochemistry. J Cell Biol. 1990 Jan;110(1):13–25. doi: 10.1083/jcb.110.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pepinsky R. B., Sinclair L. K. Epidermal growth factor-dependent phosphorylation of lipocortin. Nature. 1986 May 1;321(6065):81–84. doi: 10.1038/321081a0. [DOI] [PubMed] [Google Scholar]
  47. Pepinsky R. B., Tizard R., Mattaliano R. J., Sinclair L. K., Miller G. T., Browning J. L., Chow E. P., Burne C., Huang K. S., Pratt D. Five distinct calcium and phospholipid binding proteins share homology with lipocortin I. J Biol Chem. 1988 Aug 5;263(22):10799–10811. [PubMed] [Google Scholar]
  48. Pollard H. B., Rojas E. Ca2+-activated synexin forms highly selective, voltage-gated Ca2+ channels in phosphatidylserine bilayer membranes. Proc Natl Acad Sci U S A. 1988 May;85(9):2974–2978. doi: 10.1073/pnas.85.9.2974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Powell M. A., Glenney J. R. Regulation of calpactin I phospholipid binding by calpactin I light-chain binding and phosphorylation by p60v-src. Biochem J. 1987 Oct 15;247(2):321–328. doi: 10.1042/bj2470321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Reeves J. P., Dowben R. M. Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol. 1969 Feb;73(1):49–60. doi: 10.1002/jcp.1040730108. [DOI] [PubMed] [Google Scholar]
  51. Robitzki A., Schröder H. C., Ugarković D., Gramzow M., Fritsche U., Batel R., Müller W. E. cDNA structure and expression of calpactin, a peptide involved in Ca2(+)-dependent cell aggregation in sponges. Biochem J. 1990 Oct 15;271(2):415–420. doi: 10.1042/bj2710415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Rojas E., Pollard H. B., Haigler H. T., Parra C., Burns A. L. Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes. J Biol Chem. 1990 Dec 5;265(34):21207–21215. [PubMed] [Google Scholar]
  53. Sacks P. G., Davis L. E. Production of nerveless Hydra attenuata by hydroxyurea treatments. J Cell Sci. 1979 Jun;37:189–203. doi: 10.1242/jcs.37.1.189. [DOI] [PubMed] [Google Scholar]
  54. Sarafian T., Pradel L. A., Henry J. P., Aunis D., Bader M. F. The participation of annexin II (calpactin I) in calcium-evoked exocytosis requires protein kinase C. J Cell Biol. 1991 Sep;114(6):1135–1147. doi: 10.1083/jcb.114.6.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Schlaepfer D. D., Haigler H. T. Expression of annexins as a function of cellular growth state. J Cell Biol. 1990 Jul;111(1):229–238. doi: 10.1083/jcb.111.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schlaepfer D. D., Jones J., Haigler H. T. Inhibition of protein kinase C by annexin V. Biochemistry. 1992 Feb 18;31(6):1886–1891. doi: 10.1021/bi00121a043. [DOI] [PubMed] [Google Scholar]
  57. Shostak S., Globus M. Migration of epithelio-muscular cells in Hydra. Nature. 1966 Apr 9;210(5032):218–219. doi: 10.1038/210218a0. [DOI] [PubMed] [Google Scholar]
  58. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Towle C. A., Treadwell B. V. Identification of a novel mammalian annexin. cDNA cloning, sequence analysis, and ubiquitous expression of the annexin XI gene. J Biol Chem. 1992 Mar 15;267(8):5416–5423. [PubMed] [Google Scholar]
  60. Wallner B. P., Mattaliano R. J., Hession C., Cate R. L., Tizard R., Sinclair L. K., Foeller C., Chow E. P., Browing J. L., Ramachandran K. L. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986 Mar 6;320(6057):77–81. doi: 10.1038/320077a0. [DOI] [PubMed] [Google Scholar]
  61. Weber K., Johnsson N., Plessmann U., Van P. N., Söling H. D., Ampe C., Vandekerckhove J. The amino acid sequence of protein II and its phosphorylation site for protein kinase C; the domain structure Ca2+-modulated lipid binding proteins. EMBO J. 1987 Jun;6(6):1599–1604. doi: 10.1002/j.1460-2075.1987.tb02406.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. William F., Mroczkowski B., Cohen S., Kraft A. S. Differentiation of HL-60 cells is associated with an increase in the 35-kDa protein lipocortin I. J Cell Physiol. 1988 Dec;137(3):402–410. doi: 10.1002/jcp.1041370303. [DOI] [PubMed] [Google Scholar]
  63. Wu Y. N., Wagner P. D. Calpactin-depleted cytosolic proteins restore Ca(2+)-dependent secretion to digitonin-permeabilized bovine chromaffin cells. FEBS Lett. 1991 Apr 22;282(1):197–199. doi: 10.1016/0014-5793(91)80476-j. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES