Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Sep 1;118(5):1271–1282. doi: 10.1083/jcb.118.5.1271

Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution

PMCID: PMC2289583  PMID: 1512297

Abstract

Extracellular matrix (ECM) plays an important role in the maintenance of mammary epithelial differentiation in culture. We asked whether changes in mouse mammary specific function in vivo correlate with changes in the ECM. We showed, using expression of beta-casein as a marker, that the temporal expression of ECM-degrading proteinases and their inhibitors during lactation and involution are inversely related to functional differentiation. After a lactation period of 9 d, mammary epithelial cells maintained beta-casein expression up to 5 d of involution. Two metalloproteinases, 72-kD gelatinase (and its 62-kD active form), and stromelysin, and a serine proteinase tissue plasminogen activator were detected by day four of involution, and maintained expression until at least day 10. The expression of their inhibitors, the tissue inhibitor of metalloproteinases (TIMP) and plasminogen activator inhibitor-1, preceded the onset of ECM-degrading proteinase expression and was detected by day two of involution, and showed a sharp peak of expression centered on days 4-6 of involution. When involution was accelerated by decreasing lactation to 2 d, there was an accelerated loss of beta-casein expression evident by day four and a shift in expression of ECM-remodeling proteinases and inhibitors to a focus at 2-4 d of involution. To further extend the correlation between mammary-specific function and ECM remodeling we initiated involution by sealing just one gland in an otherwise hormonally sufficient lactating animal. Alveoli in the sealed gland contained casein for at least 7 d after sealing, and closely resembled those in a lactating gland. The relative expression of TIMP in the sealed gland increased, whereas the expression of stromelysin was much lower than that of a hormone-depleted involuting gland, indicating that the higher the ratio of TIMP to ECM-degrading proteinases the slower the process of involution. To test directly the functional role of ECM-degrading proteinases in the loss of tissue-specific function we artificially perturbed the ECM-degrading proteinase-inhibitor ratio in a normally involuting gland by maintaining high concentrations of TIMP protein with the use of surgically implanted slow-release pellets. In a concentration-dependent fashion, involuting mammary glands that received TIMP implants maintained high levels of casein and delayed alveolar regression. These data suggest that the balance of ECM- degrading proteinases and their inhibitors regulates the organization of the basement membrane and the tissue-specific function of the mammary gland.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aratani Y., Kitagawa Y. Enhanced synthesis and secretion of type IV collagen and entactin during adipose conversion of 3T3-L1 cells and production of unorthodox laminin complex. J Biol Chem. 1988 Nov 5;263(31):16163–16169. [PubMed] [Google Scholar]
  2. Barcellos-Hoff M. H., Aggeler J., Ram T. G., Bissell M. J. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989 Feb;105(2):223–235. doi: 10.1242/dev.105.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Basset P., Bellocq J. P., Wolf C., Stoll I., Hutin P., Limacher J. M., Podhajcer O. L., Chenard M. P., Rio M. C., Chambon P. A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature. 1990 Dec 20;348(6303):699–704. doi: 10.1038/348699a0. [DOI] [PubMed] [Google Scholar]
  4. Beers W. H., Strickland S., Reich E. Ovarian plasminogen activator: relationship to ovulation and hormonal regulation. Cell. 1975 Nov;6(3):387–394. doi: 10.1016/0092-8674(75)90188-9. [DOI] [PubMed] [Google Scholar]
  5. Behrendtsen O., Alexander C. M., Werb Z. Metalloproteinases mediate extracellular matrix degradation by cells from mouse blastocyst outgrowths. Development. 1992 Feb;114(2):447–456. doi: 10.1242/dev.114.2.447. [DOI] [PubMed] [Google Scholar]
  6. Blum J. L., Zeigler M. E., Wicha M. S. Regulation of rat mammary gene expression by extracellular matrix components. Exp Cell Res. 1987 Dec;173(2):322–340. doi: 10.1016/0014-4827(87)90274-6. [DOI] [PubMed] [Google Scholar]
  7. Brenner C. A., Adler R. R., Rappolee D. A., Pedersen R. A., Werb Z. Genes for extracellular-matrix-degrading metalloproteinases and their inhibitor, TIMP, are expressed during early mammalian development. Genes Dev. 1989 Jun;3(6):848–859. doi: 10.1101/gad.3.6.848. [DOI] [PubMed] [Google Scholar]
  8. Chen L. H., Bissell M. J. A novel regulatory mechanism for whey acidic protein gene expression. Cell Regul. 1989 Nov;1(1):45–54. doi: 10.1091/mbc.1.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Coleman S., Daniel C. W. Inhibition of mouse mammary ductal morphogenesis and down-regulation of the EGF receptor by epidermal growth factor. Dev Biol. 1990 Feb;137(2):425–433. doi: 10.1016/0012-1606(90)90267-m. [DOI] [PubMed] [Google Scholar]
  11. Darribère T., Guida K., Larjava H., Johnson K. E., Yamada K. M., Thiery J. P., Boucaut J. C. In vivo analyses of integrin beta 1 subunit function in fibronectin matrix assembly. J Cell Biol. 1990 May;110(5):1813–1823. doi: 10.1083/jcb.110.5.1813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  13. Fukuda Y., Masuda Y., Kishi J., Hashimoto Y., Hayakawa T., Nogawa H., Nakanishi Y. The role of interstitial collagens in cleft formation of mouse embryonic submandibular gland during initial branching. Development. 1988 Jun;103(2):259–267. doi: 10.1242/dev.103.2.259. [DOI] [PubMed] [Google Scholar]
  14. Gewert D. R., Coulombe B., Castelino M., Skup D., Williams B. R. Characterization and expression of a murine gene homologous to human EPA/TIMP: a virus-induced gene in the mouse. EMBO J. 1987 Mar;6(3):651–657. doi: 10.1002/j.1460-2075.1987.tb04804.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg G. I., Eisen A. Z. Extracellular matrix metalloproteinases in tumor invasion and metastasis. Cancer Treat Res. 1991;53:421–440. doi: 10.1007/978-1-4615-3940-7_20. [DOI] [PubMed] [Google Scholar]
  16. Hurley W. L. Mammary function during the nonlactating period: enzyme, lactose, protein concentrations, and pH of mammary secretions. J Dairy Sci. 1987 Jan;70(1):20–28. doi: 10.3168/jds.S0022-0302(87)79976-7. [DOI] [PubMed] [Google Scholar]
  17. Hurley W. L. Mammary gland function during involution. J Dairy Sci. 1989 Jun;72(6):1637–1646. doi: 10.3168/jds.S0022-0302(89)79276-6. [DOI] [PubMed] [Google Scholar]
  18. Li M. L., Aggeler J., Farson D. A., Hatier C., Hassell J., Bissell M. J. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):136–140. doi: 10.1073/pnas.84.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Martinez-Hernandez A., Fink L. M., Pierce G. B. Removal of basement membrane in the involuting breast. Lab Invest. 1976 May;34(5):455–462. [PubMed] [Google Scholar]
  20. Matrisian L. M. Metalloproteinases and their inhibitors in matrix remodeling. Trends Genet. 1990 Apr;6(4):121–125. doi: 10.1016/0168-9525(90)90126-q. [DOI] [PubMed] [Google Scholar]
  21. Monteagudo C., Merino M. J., San-Juan J., Liotta L. A., Stetler-Stevenson W. G. Immunohistochemical distribution of type IV collagenase in normal, benign, and malignant breast tissue. Am J Pathol. 1990 Mar;136(3):585–592. [PMC free article] [PubMed] [Google Scholar]
  22. Ostrowski L. E., Finch J., Krieg P., Matrisian L., Patskan G., O'Connell J. F., Phillips J., Slaga T. J., Breathnach R., Bowden G. T. Expression pattern of a gene for a secreted metalloproteinase during late stages of tumor progression. Mol Carcinog. 1988;1(1):13–19. doi: 10.1002/mc.2940010106. [DOI] [PubMed] [Google Scholar]
  23. Prendergast G. C., Cole M. D. Posttranscriptional regulation of cellular gene expression by the c-myc oncogene. Mol Cell Biol. 1989 Jan;9(1):124–134. doi: 10.1128/mcb.9.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Richards R. C., Benson G. K. Ultrastructural changes accompanying involution of the mammary gland in the albino rat. J Endocrinol. 1971 Sep;51(1):127–135. doi: 10.1677/joe.0.0510127. [DOI] [PubMed] [Google Scholar]
  25. Rickles R. J., Darrow A. L., Strickland S. Molecular cloning of complementary DNA to mouse tissue plasminogen activator mRNA and its expression during F9 teratocarcinoma cell differentiation. J Biol Chem. 1988 Jan 25;263(3):1563–1569. [PubMed] [Google Scholar]
  26. Saksela O., Rifkin D. B. Cell-associated plasminogen activation: regulation and physiological functions. Annu Rev Cell Biol. 1988;4:93–126. doi: 10.1146/annurev.cb.04.110188.000521. [DOI] [PubMed] [Google Scholar]
  27. Sanchez-Lopez R., Nicholson R., Gesnel M. C., Matrisian L. M., Breathnach R. Structure-function relationships in the collagenase family member transin. J Biol Chem. 1988 Aug 25;263(24):11892–11899. [PubMed] [Google Scholar]
  28. Schmidhauser C., Bissell M. J., Myers C. A., Casperson G. F. Extracellular matrix and hormones transcriptionally regulate bovine beta-casein 5' sequences in stably transfected mouse mammary cells. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9118–9122. doi: 10.1073/pnas.87.23.9118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Silberstein G. B., Daniel C. W. Elvax 40P implants: sustained, local release of bioactive molecules influencing mammary ductal development. Dev Biol. 1982 Sep;93(1):272–278. doi: 10.1016/0012-1606(82)90259-7. [DOI] [PubMed] [Google Scholar]
  30. Silberstein G. B., Daniel C. W. Investigation of mouse mammary ductal growth regulation using slow-release plastic implants. J Dairy Sci. 1987 Sep;70(9):1981–1990. doi: 10.3168/jds.S0022-0302(87)80240-0. [DOI] [PubMed] [Google Scholar]
  31. Silberstein G. B., Strickland P., Coleman S., Daniel C. W. Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta 1-growth-inhibited mouse mammary gland. J Cell Biol. 1990 Jun;110(6):2209–2219. doi: 10.1083/jcb.110.6.2209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Stoker A. W., Streuli C. H., Martins-Green M., Bissell M. J. Designer microenvironments for the analysis of cell and tissue function. Curr Opin Cell Biol. 1990 Oct;2(5):864–874. doi: 10.1016/0955-0674(90)90085-s. [DOI] [PubMed] [Google Scholar]
  33. Strange R., Li F., Saurer S., Burkhardt A., Friis R. R. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development. 1992 May;115(1):49–58. doi: 10.1242/dev.115.1.49. [DOI] [PubMed] [Google Scholar]
  34. Streuli C. H., Bailey N., Bissell M. J. Control of mammary epithelial differentiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol. 1991 Dec;115(5):1383–1395. doi: 10.1083/jcb.115.5.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Streuli C. H., Bissell M. J. Expression of extracellular matrix components is regulated by substratum. J Cell Biol. 1990 Apr;110(4):1405–1415. doi: 10.1083/jcb.110.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Talhouk R. S., Chin J. R., Unemori E. N., Werb Z., Bissell M. J. Proteinases of the mammary gland: developmental regulation in vivo and vectorial secretion in culture. Development. 1991 Jun;112(2):439–449. doi: 10.1242/dev.112.2.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. WELLINGS S. R., DEOME K. B. Electron microscopy of milk secretion in the mammary gland of the C3H/Crgl mouse. III. Cytomorphology of the involuting gland. J Natl Cancer Inst. 1963 Feb;30:241–267. [PubMed] [Google Scholar]
  38. Warburton M. J., Mitchell D., Ormerod E. J., Rudland P. Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J Histochem Cytochem. 1982 Jul;30(7):667–676. doi: 10.1177/30.7.6179984. [DOI] [PubMed] [Google Scholar]
  39. Watt F. M. Cell culture models of differentiation. FASEB J. 1991 Mar 1;5(3):287–294. doi: 10.1096/fasebj.5.3.2001788. [DOI] [PubMed] [Google Scholar]
  40. Wicha M. S., Liotta L. A., Vonderhaar B. K., Kidwell W. R. Effects of inhibition of basement membrane collagen deposition on rat mammary gland development. Dev Biol. 1980 Dec;80(2):253–256. doi: 10.1016/0012-1606(80)90402-9. [DOI] [PubMed] [Google Scholar]
  41. Wilson M. J., Strasser M., Vogel M. M., Sinha A. A. Calcium-dependent and calcium-independent gelatinolytic proteinase activities of the rat ventral prostate and its secretion: characterization and effect of castration and testosterone treatment. Biol Reprod. 1991 May;44(5):776–785. doi: 10.1095/biolreprod44.5.776. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES