Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 May;34(5):1086–1090. doi: 10.1128/jcm.34.5.1086-1090.1996

Ribotype diversity of Listeria monocytogenes strains associated with outbreaks of listeriosis in ruminants.

M Wiedmann 1, J L Bruce 1, R Knorr 1, M Bodis 1, E M Cole 1, C I McDowell 1, P L McDonough 1, C A Batt 1
PMCID: PMC228960  PMID: 8727881

Abstract

Ribotyping is a molecular method for the characterization, identification, and typing of bacterial isolates that has value in epidemiological studies. To demonstrate the utility of this technique for typing of Listeria monocytogenes, four outbreaks of epizootic listeriosis in ruminants were investigated through coordinated detection and characterization methods utilizing classical microbiology and nucleic acid-based techniques. L. monocytogenes strains isolated from clinical samples and the silage consumed by the affected animals were ribotyped to establish the causal relationship between feed and the disease outbreak. For all but one outbreak, we were able to isolate L. monocytogenes strains represented by the same ribotype from both clinical and silage samples. Additional L. monocytogenes strains with ribotypes different from those of the respective clinical samples were isolated from all silage samples. This indicates that a diverse population of L. monocytogenes strains exists in farm environments, of which some may be more likely than others to cause disease.

Full Text

The Full Text of this article is available as a PDF (212.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Audurier A., Martin C. Phage typing of Listeria monocytogenes. Int J Food Microbiol. 1989 Jun;8(3):251–257. doi: 10.1016/0168-1605(89)90022-6. [DOI] [PubMed] [Google Scholar]
  2. Birnbaum D., Herwaldt L., Low D. E., Noble M., Pfaller M., Sherertz R., Chow A. W. Efficacy of microbial identification system for epidemiologic typing of coagulase-negative staphylococci. J Clin Microbiol. 1994 Sep;32(9):2113–2119. doi: 10.1128/jcm.32.9.2113-2119.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blanc D. S., Lugeon C., Wenger A., Siegrist H. H., Francioli P. Quantitative antibiogram typing using inhibition zone diameters compared with ribotyping for epidemiological typing of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1994 Oct;32(10):2505–2509. doi: 10.1128/jcm.32.10.2505-2509.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boerlin P., Piffaretti J. C. Typing of human, animal, food, and environmental isolates of Listeria monocytogenes by multilocus enzyme electrophoresis. Appl Environ Microbiol. 1991 Jun;57(6):1624–1629. doi: 10.1128/aem.57.6.1624-1629.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruce J. L., Hubner R. J., Cole E. M., McDowell C. I., Webster J. A. Sets of EcoRI fragments containing ribosomal RNA sequences are conserved among different strains of Listeria monocytogenes. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5229–5233. doi: 10.1073/pnas.92.11.5229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bsat N., Batt C. A. A combined modified reverse dot-blot and nested PCR assay for the specific non-radioactive detection of Listeria monocytogenes. Mol Cell Probes. 1993 Jun;7(3):199–207. doi: 10.1006/mcpr.1993.1029. [DOI] [PubMed] [Google Scholar]
  7. Fenlon D. R. Wild birds and silage as reservoirs of Listeria in the agricultural environment. J Appl Bacteriol. 1985 Dec;59(6):537–543. doi: 10.1111/j.1365-2672.1985.tb03357.x. [DOI] [PubMed] [Google Scholar]
  8. Fernandez-Garayzabal J. F., Blanco M., Vazquez-Boland J. A., Briones V., Garcia J. A., Delgado C., Domingo M., Marco J., Dominguez L. A direct plating method for monitoring the contamination of Listeria monocytogenes in silage. Zentralbl Veterinarmed B. 1992 Sep;39(7):513–518. doi: 10.1111/j.1439-0450.1992.tb01200.x. [DOI] [PubMed] [Google Scholar]
  9. Furrer B., Candrian U., Hoefelein C., Luethy J. Detection and identification of Listeria monocytogenes in cooked sausage products and in milk by in vitro amplification of haemolysin gene fragments. J Appl Bacteriol. 1991 May;70(5):372–379. doi: 10.1111/j.1365-2672.1991.tb02951.x. [DOI] [PubMed] [Google Scholar]
  10. Giacca M., Menzo S., Trojan S., Monti-Bragadin C. Cluster analysis of antibiotic susceptibility patterns of clinical isolates as a tool in nosocomial infection surveillance. Eur J Epidemiol. 1987 Jun;3(2):155–163. doi: 10.1007/BF00239753. [DOI] [PubMed] [Google Scholar]
  11. Grimont F., Grimont P. A. Ribosomal ribonucleic acid gene restriction patterns as potential taxonomic tools. Ann Inst Pasteur Microbiol. 1986 Sep-Oct;137B(2):165–175. doi: 10.1016/s0769-2609(86)80105-3. [DOI] [PubMed] [Google Scholar]
  12. Hubner R. J., Cole E. M., Bruce J. L., McDowell C. I., Webster J. A. Types of Listeria monocytogenes predicted by the positions of EcoRI cleavage sites relative to ribosomal RNA sequences. Proc Natl Acad Sci U S A. 1995 May 23;92(11):5234–5238. doi: 10.1073/pnas.92.11.5234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kolstad J., Rørvik L. M., Granum P. E. Characterization of plasmids from Listeria sp. Int J Food Microbiol. 1991 Feb;12(2-3):123–131. doi: 10.1016/0168-1605(91)90061-s. [DOI] [PubMed] [Google Scholar]
  14. Low J. C., Chalmers R. M., Donachie W., Freeman R., McLauchlin J., Sisson P. R. Pyrolysis mass spectrometry of Listeria monocytogenes isolates from sheep. Res Vet Sci. 1992 Jul;53(1):64–67. doi: 10.1016/0034-5288(92)90086-h. [DOI] [PubMed] [Google Scholar]
  15. Mayer L. W. Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the transmission of antibiotic resistance. Clin Microbiol Rev. 1988 Apr;1(2):228–243. doi: 10.1128/cmr.1.2.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schuchat A., Swaminathan B., Broome C. V. Epidemiology of human listeriosis. Clin Microbiol Rev. 1991 Apr;4(2):169–183. doi: 10.1128/cmr.4.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Tham W. Survival of Listeria monocytogenes in cheese made of unpasteurized goat milk. Acta Vet Scand. 1988;29(2):165–172. doi: 10.1186/BF03548367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990 Dec 25;18(24):7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wesley I. V., Ashton F. Restriction enzyme analysis of Listeria monocytogenes strains associated with food-borne epidemics. Appl Environ Microbiol. 1991 Apr;57(4):969–975. doi: 10.1128/aem.57.4.969-975.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wiedmann M., Czajka J., Bsat N., Bodis M., Smith M. C., Divers T. J., Batt C. A. Diagnosis and epidemiological association of Listeria monocytogenes strains in two outbreaks of listerial encephalitis in small ruminants. J Clin Microbiol. 1994 Apr;32(4):991–996. doi: 10.1128/jcm.32.4.991-996.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES