Abstract
Intracisternal granules (ICG) develop in the rough ER of hyperstimulated thyrotrophs or thyroid hormone-secreting cells of the anterior pituitary gland. To determine the fate of these granules, we carried out morphological and immunocytochemical studies on pituitaries of thyroxine-treated, thyroidectomized rats. Under these conditions the ER of thyrotrophs is dramatically dilated and contains abundant ICG; the latter contain beta subunits of thyrotrophic hormone (TSH-beta). Based on purely morphologic criteria, intermediates were identified that appeared to represent stages in the transformation of a part rough/part smooth ER cisterna into a lysosome. Using immunocytochemical and cytochemical markers, two major types of intermediates were distinguished: type 1 lacked ribosomes but were labeled with antibodies against both ER markers (PDI, KDEL, ER membrane proteins) and a lysosomal membrane marker, lgp120. They also were reactive for the lysosomal enzyme, acid phosphatase, by enzyme cytochemistry. Type 2 intermediates were weakly reactive for ER markers and contained both lgp120 and lysosomal enzymes (cathepsin D, acid phosphatase). Taken together these results suggest that in hyperstimulated thyrotrophs part rough/part smooth ER elements containing ICG lose their ribosomes, their membrane is modified, and they sequentially acquire a lysosome- type membrane and lysosomal enzymes. The findings are compatible with the conclusion that a pathway exists by which under certain conditions, secretory proteins present in the ER as well as ER membrane and content proteins can be degraded by direct conversion of ER cisternae into lysosomes.
Full Text
The Full Text of this article is available as a PDF (7.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amara J. F., Lederkremer G., Lodish H. F. Intracellular degradation of unassembled asialoglycoprotein receptor subunits: a pre-Golgi, nonlysosomal endoproteolytic cleavage. J Cell Biol. 1989 Dec;109(6 Pt 2):3315–3324. doi: 10.1083/jcb.109.6.3315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arstila A. U., Trump B. F. Studies on cellular autophagocytosis. The formation of autophagic vacuoles in the liver after glucagon administration. Am J Pathol. 1968 Nov;53(5):687–733. [PMC free article] [PubMed] [Google Scholar]
- Brown W. J., Farquhar M. G. The mannose-6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae. Cell. 1984 Feb;36(2):295–307. doi: 10.1016/0092-8674(84)90223-x. [DOI] [PubMed] [Google Scholar]
- Chun K. T., Bar-Nun S., Simoni R. D. The regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase requires a short-lived protein and occurs in the endoplasmic reticulum. J Biol Chem. 1990 Dec 15;265(35):22004–22010. [PubMed] [Google Scholar]
- Dunn W. A., Jr Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1923–1933. doi: 10.1083/jcb.110.6.1923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dunn W. A., Jr Studies on the mechanisms of autophagy: maturation of the autophagic vacuole. J Cell Biol. 1990 Jun;110(6):1935–1945. doi: 10.1083/jcb.110.6.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FARQUHAR M. G., RINEHART J. F. Cytologic alterations in the anterior pituitary gland following thyroidectomy: an electron microscope study. Endocrinology. 1954 Dec;65(6):857–876. doi: 10.1210/endo-55-6-857. [DOI] [PubMed] [Google Scholar]
- Furuno K., Ishikawa T., Akasaki K., Lee S., Nishimura Y., Tsuji H., Himeno M., Kato K. Immunocytochemical study of the surrounding envelope of autophagic vacuoles in cultured rat hepatocytes. Exp Cell Res. 1990 Aug;189(2):261–268. doi: 10.1016/0014-4827(90)90245-6. [DOI] [PubMed] [Google Scholar]
- Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
- Klausner R. D., Sitia R. Protein degradation in the endoplasmic reticulum. Cell. 1990 Aug 24;62(4):611–614. doi: 10.1016/0092-8674(90)90104-m. [DOI] [PubMed] [Google Scholar]
- Lippincott-Schwartz J., Bonifacino J. S., Yuan L. C., Klausner R. D. Degradation from the endoplasmic reticulum: disposing of newly synthesized proteins. Cell. 1988 Jul 15;54(2):209–220. doi: 10.1016/0092-8674(88)90553-3. [DOI] [PubMed] [Google Scholar]
- Louvard D., Reggio H., Warren G. Antibodies to the Golgi complex and the rough endoplasmic reticulum. J Cell Biol. 1982 Jan;92(1):92–107. doi: 10.1083/jcb.92.1.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucocq J. M., Brada D., Roth J. Immunolocalization of the oligosaccharide trimming enzyme glucosidase II. J Cell Biol. 1986 Jun;102(6):2137–2146. doi: 10.1083/jcb.102.6.2137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Magner J. A., Novak W., Papagiannes E. Subcellular localization of fucose incorporation into mouse thyrotropin and free alpha-subunits: studies employing subcellular fractionation and inhibitors of the intracellular translocation of proteins. Endocrinology. 1986 Sep;119(3):1315–1328. doi: 10.1210/endo-119-3-1315. [DOI] [PubMed] [Google Scholar]
- Magner J. A., Weintraub B. D. Thyroid-stimulating hormone subunit processing and combination in microsomal subfractions of mouse pituitary tumor. J Biol Chem. 1982 Jun 25;257(12):6709–6715. [PubMed] [Google Scholar]
- McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
- Moriarty G. C., Tobin R. B. An immunocytochemical study of TSH beta storage in rat thyroidectomy cells with and without D or L thyroxine treatment. J Histochem Cytochem. 1976 Nov;24(11):1140–1149. doi: 10.1177/24.11.187688. [DOI] [PubMed] [Google Scholar]
- Ross D. S., Downing M. F., Chin W. W., Kieffer J. D., Ridgway E. C. Divergent changes in murine pituitary concentration of free alpha- and thyrotropin beta-subunits in hypothyroidism and after thyroxine administration. Endocrinology. 1983 Jan;112(1):187–193. doi: 10.1210/endo-112-1-187. [DOI] [PubMed] [Google Scholar]
- Sitia R., Neuberger M., Alberini C., Bet P., Fra A., Valetti C., Williams G., Milstein C. Developmental regulation of IgM secretion: the role of the carboxy-terminal cysteine. Cell. 1990 Mar 9;60(5):781–790. doi: 10.1016/0092-8674(90)90092-s. [DOI] [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
- Strous G. J., Van Kerkhof P., Brok R., Roth J., Brada D. Glucosidase II, a protein of the endoplasmic reticulum with high mannose oligosaccharide chains and a rapid turnover. J Biol Chem. 1987 Mar 15;262(8):3620–3625. [PubMed] [Google Scholar]
- Tanaka Y., Harada R., Himeno M., Kato K. Biosynthesis, processing, and intracellular transport of lysosomal acid phosphatase in rat hepatocytes. J Biochem. 1990 Aug;108(2):278–286. doi: 10.1093/oxfordjournals.jbchem.a123194. [DOI] [PubMed] [Google Scholar]
- Tokuyasu K. T. Application of cryoultramicrotomy to immunocytochemistry. J Microsc. 1986 Aug;143(Pt 2):139–149. doi: 10.1111/j.1365-2818.1986.tb02772.x. [DOI] [PubMed] [Google Scholar]
- Tokuyasu K. T. Use of poly(vinylpyrrolidone) and poly(vinyl alcohol) for cryoultramicrotomy. Histochem J. 1989 Mar;21(3):163–171. doi: 10.1007/BF01007491. [DOI] [PubMed] [Google Scholar]
- Tooze J., Hollinshead M., Ludwig T., Howell K., Hoflack B., Kern H. In exocrine pancreas, the basolateral endocytic pathway converges with the autophagic pathway immediately after the early endosome. J Cell Biol. 1990 Aug;111(2):329–345. doi: 10.1083/jcb.111.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze J., Kern H. F., Fuller S. D., Howell K. E. Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J Cell Biol. 1989 Jul;109(1):35–50. doi: 10.1083/jcb.109.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waheed A., Gottschalk S., Hille A., Krentler C., Pohlmann R., Braulke T., Hauser H., Geuze H., von Figura K. Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells. EMBO J. 1988 Aug;7(8):2351–2358. doi: 10.1002/j.1460-2075.1988.tb03079.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto K., Katsuda N., Himeno M., Kato K. Cathepsin D of rat spleen. Affinity purification and properties of two types of cathepsin D. Eur J Biochem. 1979 Apr;95(3):459–467. doi: 10.1111/j.1432-1033.1979.tb12985.x. [DOI] [PubMed] [Google Scholar]
