Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Oct 1;119(1):163–170. doi: 10.1083/jcb.119.1.163

Tissue distribution and subcellular localization of mammalian myosin I

PMCID: PMC2289625  PMID: 1527166

Abstract

Myosin I, a nonfilamentous single-headed actin-activated ATPase, has recently been purified from mammalian tissue (Barylko, B., M. C. Wagner, O. Reizes, and J. P. Albanesi. 1992. Proc. Natl. Acad. Sci. USA. 89:490-494). To investigate the distribution of this enzyme in cells and tissues mAbs were generated against myosin I purified from bovine adrenal gland. Eight antibodies were characterized, five of them (M4-M8) recognize epitope(s) on the catalytic "head" portion of myosin I while the other three (M1-M3) react with the "tail" domain. Immunoblot analysis using antiadrenal myosin I antibody M2 demonstrates the widespread distribution of the enzyme in mammalian tissues. Myosin I was immunolocalized in several cell types including bovine kidney (MDBK), rat kidney (NRK), rat brain, rat phaeochromocytoma (PC12), fibroblast (Swiss 3T3), and CHO cells. In all cases, myosin I was concentrated at the cell periphery. The most intense labeling was observed in regions of the cell usually associated with motile activity (i.e., filopodia, lamellipodia and growth cones). These results are consistent with earlier observations on protozoan myosin I that suggest a motile role for the enzyme at the plasma membrane.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams R. J., Pollard T. D. Binding of myosin I to membrane lipids. Nature. 1989 Aug 17;340(6234):565–568. doi: 10.1038/340565a0. [DOI] [PubMed] [Google Scholar]
  2. Baines I. C., Korn E. D. Localization of myosin IC and myosin II in Acanthamoeba castellanii by indirect immunofluorescence and immunogold electron microscopy. J Cell Biol. 1990 Nov;111(5 Pt 1):1895–1904. doi: 10.1083/jcb.111.5.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barylko B., Wagner M. C., Reizes O., Albanesi J. P. Purification and characterization of a mammalian myosin I. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):490–494. doi: 10.1073/pnas.89.2.490. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bikle D. D., Munson S., Mancianti M. L. Limited tissue distribution of the intestinal brush border myosin I protein. Gastroenterology. 1991 Feb;100(2):395–402. doi: 10.1016/0016-5085(91)90208-3. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  6. Brodsky F. M. Clathrin structure characterized with monoclonal antibodies. I. Analysis of multiple antigenic sites. J Cell Biol. 1985 Dec;101(6):2047–2054. doi: 10.1083/jcb.101.6.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coluccio L. M. Identification of the microvillar 110-kDa calmodulin complex (myosin-1) in kidney. Eur J Cell Biol. 1991 Dec;56(2):286–294. [PubMed] [Google Scholar]
  8. Coudrier E., Reggio H., Louvard D. Immunolocalization of the 110,000 molecular weight cytoskeletal protein of intestinal microvilli. J Mol Biol. 1981 Oct 15;152(1):49–66. doi: 10.1016/0022-2836(81)90095-4. [DOI] [PubMed] [Google Scholar]
  9. Fukui Y., Lynch T. J., Brzeska H., Korn E. D. Myosin I is located at the leading edges of locomoting Dictyostelium amoebae. Nature. 1989 Sep 28;341(6240):328–331. doi: 10.1038/341328a0. [DOI] [PubMed] [Google Scholar]
  10. Garcia A., Coudrier E., Carboni J., Anderson J., Vandekerkhove J., Mooseker M., Louvard D., Arpin M. Partial deduced sequence of the 110-kD-calmodulin complex of the avian intestinal microvillus shows that this mechanoenzyme is a member of the myosin I family. J Cell Biol. 1989 Dec;109(6 Pt 1):2895–2903. doi: 10.1083/jcb.109.6.2895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gillespie P. G., Hudspeth A. J. Chemiluminescence detection of proteins from single cells. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2563–2567. doi: 10.1073/pnas.88.6.2563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glenney J. R., Jr, Osborn M., Weber K. The intracellular localization of the microvillus 110K protein, a component considered to be involved in side-on membrane attachment of F-actin. Exp Cell Res. 1982 Mar;138(1):199–205. doi: 10.1016/0014-4827(82)90106-9. [DOI] [PubMed] [Google Scholar]
  13. Hayden S. M., Wolenski J. S., Mooseker M. S. Binding of brush border myosin I to phospholipid vesicles. J Cell Biol. 1990 Aug;111(2):443–451. doi: 10.1083/jcb.111.2.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hoshimaru M., Fujio Y., Sobue K., Sugimoto T., Nakanishi S. Immunochemical evidence that myosin I heavy chain-like protein is identical to the 110-kilodalton brush-border protein. J Biochem. 1989 Sep;106(3):455–459. doi: 10.1093/oxfordjournals.jbchem.a122873. [DOI] [PubMed] [Google Scholar]
  15. Hoshimaru M., Nakanishi S. Identification of a new type of mammalian myosin heavy chain by molecular cloning. Overlap of its mRNA with preprotachykinin B mRNA. J Biol Chem. 1987 Oct 25;262(30):14625–14632. [PubMed] [Google Scholar]
  16. Höner B., Jockusch B. M. Stress fiber dynamics as probed by antibodies against myosin. Eur J Cell Biol. 1988 Oct;47(1):14–21. [PubMed] [Google Scholar]
  17. Kawakami H., Moriyoshi K., Utsumi T., Nakanishi S. Structural organization and expression of the gene for bovine myosin I heavy chain. J Biochem. 1992 Mar;111(3):302–309. doi: 10.1093/oxfordjournals.jbchem.a123754. [DOI] [PubMed] [Google Scholar]
  18. Korn E. D., Hammer J. A., 3rd Myosin I. Curr Opin Cell Biol. 1990 Feb;2(1):57–61. doi: 10.1016/s0955-0674(05)80031-6. [DOI] [PubMed] [Google Scholar]
  19. Matsudaira P. T., Burgess D. R. Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol. 1979 Dec;83(3):667–673. doi: 10.1083/jcb.83.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsudaira P. T., Burgess D. R. SDS microslab linear gradient polyacrylamide gel electrophoresis. Anal Biochem. 1978 Jul 1;87(2):386–396. doi: 10.1016/0003-2697(78)90688-7. [DOI] [PubMed] [Google Scholar]
  21. Meloche S., Ong H., Cantin M., De Léan A. Molecular characterization of the solubilized atrial natriuretic factor receptor from bovine adrenal zona glomerulosa. Mol Pharmacol. 1986 Dec;30(6):537–543. [PubMed] [Google Scholar]
  22. Mitchison T., Kirschner M. Cytoskeletal dynamics and nerve growth. Neuron. 1988 Nov;1(9):761–772. doi: 10.1016/0896-6273(88)90124-9. [DOI] [PubMed] [Google Scholar]
  23. Miyata H., Bowers B., Korn E. D. Plasma membrane association of Acanthamoeba myosin I. J Cell Biol. 1989 Oct;109(4 Pt 1):1519–1528. doi: 10.1083/jcb.109.4.1519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pfister K. K., Wagner M. C., Stenoien D. L., Brady S. T., Bloom G. S. Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J Cell Biol. 1989 Apr;108(4):1453–1463. doi: 10.1083/jcb.108.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pfister K. K., Wagner M. C., Stenoien D. L., Brady S. T., Bloom G. S. Monoclonal antibodies to kinesin heavy and light chains stain vesicle-like structures, but not microtubules, in cultured cells. J Cell Biol. 1989 Apr;108(4):1453–1463. doi: 10.1083/jcb.108.4.1453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pollard T. D., Doberstein S. K., Zot H. G. Myosin-I. Annu Rev Physiol. 1991;53:653–681. doi: 10.1146/annurev.ph.53.030191.003253. [DOI] [PubMed] [Google Scholar]
  27. Sheetz M. P., Baumrind N. L., Wayne D. B., Pearlman A. L. Concentration of membrane antigens by forward transport and trapping in neuronal growth cones. Cell. 1990 Apr 20;61(2):231–241. doi: 10.1016/0092-8674(90)90804-n. [DOI] [PubMed] [Google Scholar]
  28. Smith S. J. Neuronal cytomechanics: the actin-based motility of growth cones. Science. 1988 Nov 4;242(4879):708–715. doi: 10.1126/science.3055292. [DOI] [PubMed] [Google Scholar]
  29. Tomasek J. J., Hay E. D., Fujiwara K. Collagen modulates cell shape and cytoskeleton of embryonic corneal and fibroma fibroblasts: distribution of actin, alpha-actinin, and myosin. Dev Biol. 1982 Jul;92(1):107–122. doi: 10.1016/0012-1606(82)90155-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES