Abstract
Nicotinic stimulation and high K(+)-depolarization of chromaffin cells cause disassembly of cortical filamentous actin networks and redistribution of scinderin, a Ca(2+)-dependent actin filament-severing protein. These events which are Ca(2+)-dependent precede exocytosis. Activation of scinderin by Ca2+ may cause disassembly of actin filaments leaving cortical areas of low cytoplasmic viscosity which are the sites of exocytosis (Vitale, M. L., A. Rodriguez Del Castillo, L. Tchakarov, and J.-M. Trifaro. 1991. J. Cell. Biol. 113:1057-1067). It has been suggested that protein kinase C (PKC) regulates secretion. Therefore, the possibility that PKC activation might modulate scinderin redistribution was investigated. Here we report that PMA, a PKC activator, caused scinderin redistribution, although with a slower onset than that induced by nicotine. PMA effects were independent of either extra or intracellular Ca2+ as indicated by measurements of Ca2+ transients, and they were likely to be mediated through direct activation of PKC because inhibitors of the enzyme completely blocked the response to PMA. Scinderin was not phosphorylated by the kinase and further experiments using the Na+/H+ antiport inhibitors and intracellular pH determinations, demonstrated that PKC-mediated scinderin redistribution was a consequence of an increase in intracellular pH. Moreover, it was shown that scinderin binds to phosphatidylserine and phosphatidylinositol 4,5-biphosphate liposomes in a Ca(2+)-dependent manner, an effect which was modulated by the pH. The results suggest that under resting conditions, cortical scinderin is bound to plasma membrane phospholipids. The results also show that during nicotinic receptor stimulation both a rise in intracellular Ca2+ and pH are observed. The rise in intracellular pH might be the result of the translocation and activation of PKC produced by Ca2+ entry. This also would explain why scinderin redistribution induced by nicotine is partially (26-40%) inhibited by inhibitors of either PKC or the Na+/H+ antiport. In view of these findings, a model which can explain how scinderin redistribution and activity may be regulated by pH and Ca2+ in resting and stimulated conditions is proposed.
Full Text
The Full Text of this article is available as a PDF (2.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apgar J. R. Regulation of the antigen-induced F-actin response in rat basophilic leukemia cells by protein kinase C. J Cell Biol. 1991 Mar;112(6):1157–1163. doi: 10.1083/jcb.112.6.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bader M. F., Trifaró J. M., Langley O. K., Thiersé D., Aunis D. Secretory cell actin-binding proteins: identification of a gelsolin-like protein in chromaffin cells. J Cell Biol. 1986 Feb;102(2):636–646. doi: 10.1083/jcb.102.2.636. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bittner M. A., Holz R. W. Phorbol esters enhance exocytosis from chromaffin cells by two mechanisms. J Neurochem. 1990 Jan;54(1):205–210. doi: 10.1111/j.1471-4159.1990.tb13302.x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brocklehurst K. W., Morita K., Pollard H. B. Characterization of protein kinase C and its role in catecholamine secretion from bovine adrenal-medullary cells. Biochem J. 1985 May 15;228(1):35–42. doi: 10.1042/bj2280035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgoyne R. D., Cheek T. R. Reorganisation of peripheral actin filaments as a prelude to exocytosis. Biosci Rep. 1987 Apr;7(4):281–288. doi: 10.1007/BF01121449. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D. Control of exocytosis in adrenal chromaffin cells. Biochim Biophys Acta. 1991 Jul 22;1071(2):174–202. doi: 10.1016/0304-4157(91)90024-q. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D., Morgan A., O'Sullivan A. J. The control of cytoskeletal actin and exocytosis in intact and permeabilized adrenal chromaffin cells: role of calcium and protein kinase C. Cell Signal. 1989;1(4):323–334. doi: 10.1016/0898-6568(89)90051-x. [DOI] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Burns C. P., Rozengurt E. Serum, platelet-derived growth factor, vasopressin and phorbol esters increase intracellular pH in Swiss 3T3 cells. Biochem Biophys Res Commun. 1983 Nov 15;116(3):931–938. doi: 10.1016/s0006-291x(83)80231-9. [DOI] [PubMed] [Google Scholar]
- Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
- Cheek T. R., Burgoyne R. D. Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J Biol Chem. 1987 Aug 25;262(24):11663–11666. [PubMed] [Google Scholar]
- Cheek T. R., Burgoyne R. D. Nicotine-evoked disassembly of cortical actin filaments in adrenal chromaffin cells. FEBS Lett. 1986 Oct 20;207(1):110–114. doi: 10.1016/0014-5793(86)80022-9. [DOI] [PubMed] [Google Scholar]
- Doucet J. P., Trifaró J. M. A discontinuous and highly porous sodium dodecyl sulfate-polyacrylamide slab gel system of high resolution. Anal Biochem. 1988 Feb 1;168(2):265–271. doi: 10.1016/0003-2697(88)90317-x. [DOI] [PubMed] [Google Scholar]
- Georges E., Lindenbaum M. H., Sacher M. G., Trifaró J. M., Mushynski W. E. Neurofilament phosphorylation in cultured bovine adrenal chromaffin cells is stimulated by phorbol ester. J Neurochem. 1989 Apr;52(4):1156–1161. doi: 10.1111/j.1471-4159.1989.tb01861.x. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A., Loomis C. R., Merrill A. H., Jr, Bell R. M. Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem. 1986 Sep 25;261(27):12604–12609. [PubMed] [Google Scholar]
- Ho A. K., Thomas T. P., Chik C. L., Anderson W. B., Klein D. C. Protein kinase C: subcellular redistribution by increased Ca2+ influx. Evidence that Ca2+-dependent subcellular redistribution of protein kinase C is involved in potentiation of beta-adrenergic stimulation of pineal cAMP and cGMP by K+ and A23187. J Biol Chem. 1988 Jul 5;263(19):9292–9297. [PubMed] [Google Scholar]
- Isosaki M., Nakashima T., Kurogochi Y. Role of protein kinase C in catecholamine secretion from digitonin-permeabilized bovine adrenal medullary cells. J Biol Chem. 1991 Sep 5;266(25):16703–16707. [PubMed] [Google Scholar]
- Janmey P. A., Matsudaira P. T. Functional comparison of villin and gelsolin. Effects of Ca2+, KCl, and polyphosphoinositides. J Biol Chem. 1988 Nov 15;263(32):16738–16743. [PubMed] [Google Scholar]
- Kao L. S., Ho M. Y., Cragoe E. J., Jr Intracellular pH and catecholamine secretion from bovine adrenal chromaffin cells. J Neurochem. 1991 Nov;57(5):1656–1660. doi: 10.1111/j.1471-4159.1991.tb06365.x. [DOI] [PubMed] [Google Scholar]
- Katoh N., Wise B. C., Kuo J. F. Phosphorylation of cardiac troponin inhibitory subunit (troponin I) and tropomyosin-binding subunit (troponin T) by cardiac phospholipid-sensitive Ca2+-dependent protein kinase. Biochem J. 1983 Jan 1;209(1):189–195. doi: 10.1042/bj2090189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawamoto S., Hidaka H. Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin-binding proteins. Biochem Biophys Res Commun. 1984 Feb 14;118(3):736–742. doi: 10.1016/0006-291x(84)91456-6. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Baker P. F. The phorbol ester TPA increases the affinity of exocytosis for calcium in 'leaky' adrenal medullary cells. FEBS Lett. 1983 Aug 22;160(1-2):98–100. doi: 10.1016/0014-5793(83)80944-2. [DOI] [PubMed] [Google Scholar]
- Knight D. E., Sugden D., Baker P. F. Evidence implicating protein kinase C in exocytosis from electropermeabilized bovine chromaffin cells. J Membr Biol. 1988 Aug;104(1):21–34. doi: 10.1007/BF01871899. [DOI] [PubMed] [Google Scholar]
- Kobayashi E., Nakano H., Morimoto M., Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1989 Mar 15;159(2):548–553. doi: 10.1016/0006-291x(89)90028-4. [DOI] [PubMed] [Google Scholar]
- Kraft A. S., Anderson W. B. Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane. Nature. 1983 Feb 17;301(5901):621–623. doi: 10.1038/301621a0. [DOI] [PubMed] [Google Scholar]
- Lelkes P. I., Friedman J. E., Rosenheck K., Oplatka A. Destabilization of actin filaments as a requirement for the secretion of catecholamines from permeabilized chromaffin cells. FEBS Lett. 1986 Nov 24;208(2):357–363. doi: 10.1016/0014-5793(86)81049-3. [DOI] [PubMed] [Google Scholar]
- Litchfield D. W., Ball E. H. Phosphorylation of the cytoskeletal protein talin by protein kinase C. Biochem Biophys Res Commun. 1986 Feb 13;134(3):1276–1283. doi: 10.1016/0006-291x(86)90388-8. [DOI] [PubMed] [Google Scholar]
- Maekawa S., Sakai H. Inhibition of actin regulatory activity of the 74-kDa protein from bovine adrenal medulla (adseverin) by some phospholipids. J Biol Chem. 1990 Jul 5;265(19):10940–10942. [PubMed] [Google Scholar]
- Maekawa S., Toriyama M., Hisanaga S., Yonezawa N., Endo S., Hirokawa N., Sakai H. Purification and characterization of a Ca2+-dependent actin filament severing protein from bovine adrenal medulla. J Biol Chem. 1989 May 5;264(13):7458–7465. [PubMed] [Google Scholar]
- Marxen P., Bigalke H. Tetanus and botulinum A toxins inhibit stimulated F-actin rearrangement in chromaffin cells. Neuroreport. 1991 Jan;2(1):33–36. doi: 10.1097/00001756-199101000-00008. [DOI] [PubMed] [Google Scholar]
- Miyamoto S., Wu J. M. Effect of staurosporine on the induction of actin/gelsolin in PMA-treated HL-60 cells. Biochem Int. 1990 Nov;22(3):427–433. [PubMed] [Google Scholar]
- Moolenaar W. H., Tsien R. Y., van der Saag P. T., de Laat S. W. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature. 1983 Aug 18;304(5927):645–648. doi: 10.1038/304645a0. [DOI] [PubMed] [Google Scholar]
- Morita K., Brocklehurst K. W., Tomares S. M., Pollard H. B. The phorbol ester TPA enhances A23187--but not carbachol- and high K+-induced catecholamine secretion from cultured bovine adrenal chromaffin cells. Biochem Biophys Res Commun. 1985 Jun 14;129(2):511–516. doi: 10.1016/0006-291x(85)90181-0. [DOI] [PubMed] [Google Scholar]
- Naka M., Nishikawa M., Adelstein R. S., Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature. 1983 Dec 1;306(5942):490–492. doi: 10.1038/306490a0. [DOI] [PubMed] [Google Scholar]
- Negishi M., Ito S., Hayaishi O. Involvement of protein kinase C in prostaglandin E2-induced catecholamine release from cultured bovine adrenal chromaffin cells. J Biol Chem. 1990 Apr 15;265(11):6182–6188. [PubMed] [Google Scholar]
- Phatak P. D., Packman C. H., Lichtman M. A. Protein kinase C modulates actin conformation in human T lymphocytes. J Immunol. 1988 Nov 1;141(9):2929–2934. [PubMed] [Google Scholar]
- Pocotte S. L., Frye R. A., Senter R. A., TerBush D. R., Lee S. A., Holz R. W. Effects of phorbol ester on catecholamine secretion and protein phosphorylation in adrenal medullary cell cultures. Proc Natl Acad Sci U S A. 1985 Feb;82(3):930–934. doi: 10.1073/pnas.82.3.930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
- Rodriguez Del Castillo A., Lemaire S., Tchakarov L., Jeyapragasan M., Doucet J. P., Vitale M. L., Trifaró J. M. Chromaffin cell scinderin, a novel calcium-dependent actin filament-severing protein. EMBO J. 1990 Jan;9(1):43–52. doi: 10.1002/j.1460-2075.1990.tb08078.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodríguez Del Castillo A., Vitale M. L., Tchakarov L., Trifaró J. M. Human platelets contain scinderin, a Ca(2+)-dependent actin filament-severing protein. Thromb Haemost. 1992 Feb 3;67(2):248–251. [PubMed] [Google Scholar]
- Rosario L. M., Stutzin A., Cragoe E. J., Jr, Pollard H. B. Modulation of intracellular pH by secretagogues and the Na+/H+ antiporter in cultured bovine chromaffin cells. Neuroscience. 1991;41(1):269–276. doi: 10.1016/0306-4522(91)90215-a. [DOI] [PubMed] [Google Scholar]
- Sakurai T., Kurokawa H., Nonomura Y. Comparison between the gelsolin and adseverin domain structure. J Biol Chem. 1991 Aug 25;266(24):15979–15983. [PubMed] [Google Scholar]
- Sakurai T., Kurokawa H., Nonomura Y. The Ca2(+)-dependent actin filament-severing activity of 74-kDa protein (adseverin) resides in its NH2-terminal half. J Biol Chem. 1991 Mar 5;266(7):4581–4585. [PubMed] [Google Scholar]
- Tachikawa E., Takahashi S., Kashimoto T., Kondo Y. Role of Ca2+/phospholipid-dependent protein kinase in catecholamine secretion from bovine adrenal medullary chromaffin cells. Biochem Pharmacol. 1990 Oct 1;40(7):1505–1513. doi: 10.1016/0006-2952(90)90447-s. [DOI] [PubMed] [Google Scholar]
- Takai Y., Kishimoto A., Iwasa Y., Kawahara Y., Mori T., Nishizuka Y. Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem. 1979 May 25;254(10):3692–3695. [PubMed] [Google Scholar]
- Talor Z., Ng S. C., Cragoe E. J., Arruda J. A. Methyl isobutyl amiloride: a new probe to assess the number of Na-H antiporters. Life Sci. 1989;45(6):517–523. doi: 10.1016/0024-3205(89)90102-1. [DOI] [PubMed] [Google Scholar]
- Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
- Tchakarov L., Vitale M. L., Jeyapragasan M., Rodriguez Del Castillo A., Trifaró J. M. Expression of scinderin, an actin filament-severing protein, in different tissues. FEBS Lett. 1990 Jul 30;268(1):209–212. doi: 10.1016/0014-5793(90)81010-l. [DOI] [PubMed] [Google Scholar]
- TerBush D. R., Bittner M. A., Holz R. W. Ca2+ influx causes rapid translocation of protein kinase C to membranes. Studies of the effects of secretagogues in adrenal chromaffin cells. J Biol Chem. 1988 Dec 15;263(35):18873–18879. [PubMed] [Google Scholar]
- TerBush D. R., Holz R. W. Effects of phorbol esters, diglyceride, and cholinergic agonists on the subcellular distribution of protein kinase C in intact or digitonin-permeabilized adrenal chromaffin cells. J Biol Chem. 1986 Dec 25;261(36):17099–17106. [PubMed] [Google Scholar]
- Terbush D. R., Holz R. W. Activation of protein kinase C is not required for exocytosis from bovine adrenal chromaffin cells. The effects of protein kinase C(19-31), Ca/CaM kinase II(291-317), and staurosporine. J Biol Chem. 1990 Dec 5;265(34):21179–21184. [PubMed] [Google Scholar]
- Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trifaró J. M., Kenigsberg R. L., Côté A., Lee R. W., Hikita T. Adrenal paraneurone contractile proteins and stimulus-secretion coupling. Can J Physiol Pharmacol. 1984 Apr;62(4):493–501. doi: 10.1139/y84-079. [DOI] [PubMed] [Google Scholar]
- Tucker R. W., Meade-Cobun K., Ferris D. Cell shape and increased free cytosolic calcium [Ca2+]i induced by growth factors. Cell Calcium. 1990 Feb-Mar;11(2-3):201–209. doi: 10.1016/0143-4160(90)90071-2. [DOI] [PubMed] [Google Scholar]
- Uchida T., Filburn C. R. Affinity chromatography of protein kinase C-phorbol ester receptor on polyacrylamide-immobilized phosphatidylserine. J Biol Chem. 1984 Oct 25;259(20):12311–12314. [PubMed] [Google Scholar]
- Umekawa H., Hidaka H. Phosphorylation of caldesmon by protein kinase C. Biochem Biophys Res Commun. 1985 Oct 15;132(1):56–62. doi: 10.1016/0006-291x(85)90987-8. [DOI] [PubMed] [Google Scholar]
- Vitale M. L., Rodríguez Del Castillo A., Tchakarov L., Trifaró J. M. Cortical filamentous actin disassembly and scinderin redistribution during chromaffin cell stimulation precede exocytosis, a phenomenon not exhibited by gelsolin. J Cell Biol. 1991 Jun;113(5):1057–1067. doi: 10.1083/jcb.113.5.1057. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanagihara N., Yokota K., Kobayashi H., Wada A., Uezono Y., Izumi F. Sodium/proton exchange in cultured bovine adrenal medullary cells. J Neurochem. 1990 May;54(5):1626–1631. doi: 10.1111/j.1471-4159.1990.tb01214.x. [DOI] [PubMed] [Google Scholar]
- Yin H. L., Iida K., Janmey P. A. Identification of a polyphosphoinositide-modulated domain in gelsolin which binds to the sides of actin filaments. J Cell Biol. 1988 Mar;106(3):805–812. doi: 10.1083/jcb.106.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]
- Zalewski P. D., Forbes I. J., Giannakis C., Cowled P. A., Betts W. H. Synergy between zinc and phorbol ester in translocation of protein kinase C to cytoskeleton. FEBS Lett. 1990 Oct 29;273(1-2):131–134. doi: 10.1016/0014-5793(90)81067-x. [DOI] [PubMed] [Google Scholar]
