Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Nov 2;119(4):989–995. doi: 10.1083/jcb.119.4.989

Thyroid hormone, insulin, and glucocorticoids are sufficient to support chondrocyte differentiation to hypertrophy: a serum-free analysis

PMCID: PMC2289697  PMID: 1429844

Abstract

Chondrocytes from chicken embryo tibia can be maintained in culture as adherent cells in Coon's modified Ham's F-12 medium supplemented with 10% FCS. In this condition, they dedifferentiate, losing type II collagen expression in favor of type I collagen synthesis. Their differentiation to hypertrophy can be obtained by transferring them to suspension culture. Differentiation is evidenced by the shift from type I to type II and type IX collagen synthesis and the following predominant expression of type X collagen, all markers of specific stages of the differentiation process. To identify the factors required for differentiation, we developed a serum-free culture system where only the addition of triiodothyronine (T3; 10(-11) M), insulin (60 ng/ml), and dexamethasone (10(-9) M) to the F-12 medium was sufficient to obtain hypertrophic chondrocytes. In this hormonal context, chondrocytes display the same changes in the pattern of protein synthesis as described above. For proper and complete cell maturation, T3 and insulin concentrations cannot be modified. Insulin cannot be substituted by insulin-like growth factor-I, but dexamethasone concentration can be decreased to 10(-12) M without chondrogenesis being impaired. In the latter case, the expression of type X collagen and its mRNA are inversely proportional to dexamethasone concentration. When ascorbic acid is added to the hormone-supplemented medium, differentiating chondrocytes organize their matrix leading to a cartilage-like structure with hypertrophic chondrocytes embedded in lacunae. However, this structure does not present detectable calcification, at variance with control cultures maintained in FCS. Accordingly, in the presence of the hormone mixture, the differentiating chondrocytes have low levels of alkaline phosphatase activity. This report indicates that T3 and insulin are primary factors involved in the onset and progression of chondrogenesis, while dexamethasone supports cell viability and modulates some differentiated functions.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambesi-Impiombato F. S., Parks L. A., Coon H. G. Culture of hormone-dependent functional epithelial cells from rat thyroids. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3455–3459. doi: 10.1073/pnas.77.6.3455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bruckner P., Hörler I., Mendler M., Houze Y., Winterhalter K. H., Eich-Bender S. G., Spycher M. A. Induction and prevention of chondrocyte hypertrophy in culture. J Cell Biol. 1989 Nov;109(5):2537–2545. doi: 10.1083/jcb.109.5.2537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burch W. M., Lebovitz H. E. Triiodothyronine stimulates maturation of porcine growth-plate cartilage in vitro. J Clin Invest. 1982 Sep;70(3):496–504. doi: 10.1172/JCI110641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burch W. M., Van Wyk J. J. Triiodothyronine stimulates cartilage growth and maturation by different mechanisms. Am J Physiol. 1987 Feb;252(2 Pt 1):E176–E182. doi: 10.1152/ajpendo.1987.252.2.E176. [DOI] [PubMed] [Google Scholar]
  5. Burch W. M., Weir S., Van Wyk J. J. Embryonic chick cartilage produces its own somatomedin-like peptide to stimulate cartilage growth in vitro. Endocrinology. 1986 Sep;119(3):1370–1376. doi: 10.1210/endo-119-3-1370. [DOI] [PubMed] [Google Scholar]
  6. Burstein P. J., Draznin B., Johnson C. J., Schalch D. S. The effect of hypothyroidism on growth, serum growth hormone, the growth hormone-dependent somatomedin, insulin-like growth factor, and its carrier protein in rats. Endocrinology. 1979 Apr;104(4):1107–1111. doi: 10.1210/endo-104-4-1107. [DOI] [PubMed] [Google Scholar]
  7. Castagnola P., Dozin B., Moro G., Cancedda R. Changes in the expression of collagen genes show two stages in chondrocyte differentiation in vitro. J Cell Biol. 1988 Feb;106(2):461–467. doi: 10.1083/jcb.106.2.461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castagnola P., Moro G., Descalzi-Cancedda F., Cancedda R. Type X collagen synthesis during in vitro development of chick embryo tibial chondrocytes. J Cell Biol. 1986 Jun;102(6):2310–2317. doi: 10.1083/jcb.102.6.2310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Castagnola P., Torella G., Cancedda R. Type X collagen synthesis by cultured chondrocytes derived from the permanent cartilaginous region of chick embryo sternum. Dev Biol. 1987 Oct;123(2):332–337. doi: 10.1016/0012-1606(87)90391-5. [DOI] [PubMed] [Google Scholar]
  10. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  11. Dozin B., Descalzi F., Briata L., Hayashi M., Gentili C., Hayashi K., Quarto R., Cancedda R. Expression, regulation, and tissue distribution of the Ch21 protein during chicken embryogenesis. J Biol Chem. 1992 Feb 15;267(5):2979–2985. [PubMed] [Google Scholar]
  12. Giaretti W., Moro G., Quarto R., Bruno S., Di Vinci A., Geido E., Cancedda R. Flow cytometric evaluation of cell cycle characteristics during in vitro differentiation of chick embryo chondrocytes. Cytometry. 1988 Jul;9(4):281–290. doi: 10.1002/cyto.990090403. [DOI] [PubMed] [Google Scholar]
  13. Grigoriadis A. E., Aubin J. E., Heersche J. N. Effects of dexamethasone and vitamin D3 on cartilage differentiation in a clonal chondrogenic cell population. Endocrinology. 1989 Oct;125(4):2103–2110. doi: 10.1210/endo-125-4-2103. [DOI] [PubMed] [Google Scholar]
  14. Grisham M. B., Jefferson M. M., Thomas E. L. Role of monochloramine in the oxidation of erythrocyte hemoglobin by stimulated neutrophils. J Biol Chem. 1984 Jun 10;259(11):6757–6765. [PubMed] [Google Scholar]
  15. Habuchi H., Conrad H. E., Glaser J. H. Coordinate regulation of collagen and alkaline phosphatase levels in chick embryo chondrocytes. J Biol Chem. 1985 Oct 25;260(24):13029–13034. [PubMed] [Google Scholar]
  16. Hewitt A. T., Kleinman H. K., Pennypacker J. P., Martin G. R. Identification of an adhesion factor for chondrocytes. Proc Natl Acad Sci U S A. 1980 Jan;77(1):385–388. doi: 10.1073/pnas.77.1.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Itagane Y., Inada H., Fujita K., Isshiki G. Interactions between steroid hormones and insulin-like growth factor-I in rabbit chondrocytes. Endocrinology. 1991 Mar;128(3):1419–1424. doi: 10.1210/endo-128-3-1419. [DOI] [PubMed] [Google Scholar]
  18. Kato Y., Gospodarowicz D. Stimulation by glucocorticoid of the synthesis of cartilage-matrix proteoglycans produced by rabbit costal chondrocytes in vitro. J Biol Chem. 1985 Feb 25;260(4):2364–2373. [PubMed] [Google Scholar]
  19. Kujawa M. J., Lennon D. P., Caplan A. I. Growth and differentiation of stage 24 limb mesenchyme cells in a serum-free chemically defined medium. Exp Cell Res. 1989 Jul;183(1):45–61. doi: 10.1016/0014-4827(89)90417-5. [DOI] [PubMed] [Google Scholar]
  20. Lewinson D., Harel Z., Shenzer P., Silbermann M., Hochberg Z. Effect of thyroid hormone and growth hormone on recovery from hypothyroidism of epiphyseal growth plate cartilage and its adjacent bone. Endocrinology. 1989 Feb;124(2):937–945. doi: 10.1210/endo-124-2-937. [DOI] [PubMed] [Google Scholar]
  21. Maor G., Hochberg Z., von der Mark K., Heinegard D., Silbermann M. Human growth hormone enhances chondrogenesis and osteogenesis in a tissue culture system of chondroprogenitor cells. Endocrinology. 1989 Sep;125(3):1239–1245. doi: 10.1210/endo-125-3-1239. [DOI] [PubMed] [Google Scholar]
  22. Schlechter N. L., Russell S. M., Spencer E. M., Nicoll C. S. Evidence suggesting that the direct growth-promoting effect of growth hormone on cartilage in vivo is mediated by local production of somatomedin. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7932–7934. doi: 10.1073/pnas.83.20.7932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Solursh M., Jensen K. L., Zanetti N. C., Linsenmayer T. F., Reiter R. S. Extracellular matrix mediates epithelial effects on chondrogenesis in vitro. Dev Biol. 1984 Oct;105(2):451–457. doi: 10.1016/0012-1606(84)90302-6. [DOI] [PubMed] [Google Scholar]
  24. Tacchetti C., Quarto R., Campanile G., Cancedda R. Calcification of in vitro developed hypertrophic cartilage. Dev Biol. 1989 Apr;132(2):442–447. doi: 10.1016/0012-1606(89)90240-6. [DOI] [PubMed] [Google Scholar]
  25. Tacchetti C., Quarto R., Nitsch L., Hartmann D. J., Cancedda R. In vitro morphogenesis of chick embryo hypertrophic cartilage. J Cell Biol. 1987 Aug;105(2):999–1006. doi: 10.1083/jcb.105.2.999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Thorogood P. V., Hinchliffe J. R. An analysis of the condensation process during chondrogenesis in the embryonic chick hind limb. J Embryol Exp Morphol. 1975 Jun;33(3):581–606. [PubMed] [Google Scholar]
  27. Tschan T., Höerler I., Houze Y., Winterhalter K. H., Richter C., Bruckner P. Resting chondrocytes in culture survive without growth factors, but are sensitive to toxic oxygen metabolites. J Cell Biol. 1990 Jul;111(1):257–260. doi: 10.1083/jcb.111.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weiss R. E., Reddi A. H. Synthesis and localization of fibronectin during collagenous matrix-mesenchymal cell interaction and differentiation of cartilage and bone in vivo. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2074–2078. doi: 10.1073/pnas.77.4.2074. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES