Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Nov 2;119(4):787–796. doi: 10.1083/jcb.119.4.787

Clathrin assembly protein AP-2 induces aggregation of membrane vesicles: a possible role for AP-2 in endosome formation

PMCID: PMC2289704  PMID: 1358896

Abstract

We have examined the in vitro behavior of clathrin-coated vesicles that have been stripped of their surface coats such that the majority of the clathrin is removed but substantial amounts of clathrin assembly proteins (AP) remain membrane-associated. Aggregation of these stripped coated vesicles (s-CV) is observed when they are placed under conditions that approximate the pH and ionic strength of the cell interior (pH 7.2, approximately 100 mM salt). This s-CV aggregation reaction is rapid (t1/2 < or = 0.5 min), independent of temperature within a range of 4-37 degrees C, and unaffected by ATP, guanosine-5'-O- (3-thiophosphate), and in particular EGTA, distinguishing it from Ca(2+)-dependent membrane aggregation reactions. The process is driven by the action of membrane-associated AP molecules since partial proteolysis results in a full loss of activity and since aggregation is abolished by pretreatment of the s-CVs with a monoclonal antibody that reacts with the alpha subunit of AP-2. However, vesicle aggregation is not inhibited by PPPi, indicating that the previously characterized polyphosphate-sensitive AP-2 self-association is not responsible for the reaction. The vesicle aggregation reaction can be reconstituted: liposomes of phospholipid composition approximating that found on the cytoplasmic surfaces of the plasma membrane and of coated vesicles (70% L-alpha-phosphatidylethanolamine (type I-A), 15% L-alpha-phosphatidyl-L- serine, and 15% L-alpha-phosphatidylinositol) aggregated after addition of AP-2, but not of AP-1, AP-3 (AP180), or pure clathrin triskelions. Aggregation of liposomes is abolished by limited proteolysis of AP-2 with trypsin. In addition, a highly purified AP-2 alpha preparation devoid of beta causes liposome aggregation, whereas pure beta subunit does not, consistent with results obtained in the s-CV assay which also indicate the involvement of the alpha subunit. Using a fluorescence energy transfer assay we show that AP-2 does not cause fusion of liposomes under physiological solution conditions. However, since the fusion of membranes necessarily requires the close opposition of the two participating bilayers, the AP-2-dependent vesicle aggregation events that we have identified may represent an initial step in the formation and fusion of endosomes that occur subsequent to endocytosis and clathrin uncoating in vivo.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahle S., Mann A., Eichelsbacher U., Ungewickell E. Structural relationships between clathrin assembly proteins from the Golgi and the plasma membrane. EMBO J. 1988 Apr;7(4):919–929. doi: 10.1002/j.1460-2075.1988.tb02897.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ahle S., Ungewickell E. Identification of a clathrin binding subunit in the HA2 adaptor protein complex. J Biol Chem. 1989 Nov 25;264(33):20089–20093. [PubMed] [Google Scholar]
  3. Ahle S., Ungewickell E. Purification and properties of a new clathrin assembly protein. EMBO J. 1986 Dec 1;5(12):3143–3149. doi: 10.1002/j.1460-2075.1986.tb04621.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Altstiel L., Branton D. Fusion of coated vesicles with lysosomes: measurement with a fluorescence assay. Cell. 1983 Mar;32(3):921–929. doi: 10.1016/0092-8674(83)90077-6. [DOI] [PubMed] [Google Scholar]
  5. Beck K. A., Keen J. H. Interaction of phosphoinositide cycle intermediates with the plasma membrane-associated clathrin assembly protein AP-2. J Biol Chem. 1991 Mar 5;266(7):4442–4447. [PubMed] [Google Scholar]
  6. Beck K. A., Keen J. H. Self-association of the plasma membrane-associated clathrin assembly protein AP-2. J Biol Chem. 1991 Mar 5;266(7):4437–4441. [PubMed] [Google Scholar]
  7. Blumenthal R., Henkart M., Steer C. J. Clathrin-induced pH-dependent fusion of phosphatidylcholine vesicles. J Biol Chem. 1983 Mar 10;258(5):3409–3415. [PubMed] [Google Scholar]
  8. Brodsky F. M. Clathrin structure characterized with monoclonal antibodies. I. Analysis of multiple antigenic sites. J Cell Biol. 1985 Dec;101(6):2047–2054. doi: 10.1083/jcb.101.6.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brodsky F. M., Galloway C. J., Blank G. S., Jackson A. P., Seow H. F., Drickamer K., Parham P. Localization of clathrin light-chain sequences mediating heavy-chain binding and coated vesicle diversity. Nature. 1987 Mar 12;326(6109):203–205. doi: 10.1038/326203a0. [DOI] [PubMed] [Google Scholar]
  10. Chin D. J., Straubinger R. M., Acton S., Näthke I., Brodsky F. M. 100-kDa polypeptides in peripheral clathrin-coated vesicles are required for receptor-mediated endocytosis. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9289–9293. doi: 10.1073/pnas.86.23.9289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diaz R., Mayorga L. S., Mayorga L. E., Stahl P. In vitro clustering and multiple fusion among macrophage endosomes. J Biol Chem. 1989 Aug 5;264(22):13171–13180. [PubMed] [Google Scholar]
  12. Diaz R., Mayorga L., Stahl P. In vitro fusion of endosomes following receptor-mediated endocytosis. J Biol Chem. 1988 May 5;263(13):6093–6100. [PubMed] [Google Scholar]
  13. Drust D. S., Creutz C. E. Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature. 1988 Jan 7;331(6151):88–91. doi: 10.1038/331088a0. [DOI] [PubMed] [Google Scholar]
  14. Dunn K. W., McGraw T. E., Maxfield F. R. Iterative fractionation of recycling receptors from lysosomally destined ligands in an early sorting endosome. J Cell Biol. 1989 Dec;109(6 Pt 2):3303–3314. doi: 10.1083/jcb.109.6.3303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Düzgünes N., Hoekstra D., Hong K., Papahadjopoulos D. Lectins facilitate calcium-induced fusion of phospholipid vesicles containing glycosphingolipids. FEBS Lett. 1984 Jul 23;173(1):80–84. doi: 10.1016/0014-5793(84)81021-2. [DOI] [PubMed] [Google Scholar]
  16. Feigenson G. W. Calcium ion binding between lipid bilayers: the four-component system of phosphatidylserine, phosphatidylcholine, calcium chloride, and water. Biochemistry. 1989 Feb 7;28(3):1270–1278. doi: 10.1021/bi00429a048. [DOI] [PubMed] [Google Scholar]
  17. Goldstein J. L., Brown M. S., Anderson R. G., Russell D. W., Schneider W. J. Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol. 1985;1:1–39. doi: 10.1146/annurev.cb.01.110185.000245. [DOI] [PubMed] [Google Scholar]
  18. Gruenberg J., Howell K. E. Membrane traffic in endocytosis: insights from cell-free assays. Annu Rev Cell Biol. 1989;5:453–481. doi: 10.1146/annurev.cb.05.110189.002321. [DOI] [PubMed] [Google Scholar]
  19. Guagliardi L. E., Koppelman B., Blum J. S., Marks M. S., Cresswell P., Brodsky F. M. Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature. 1990 Jan 11;343(6254):133–139. doi: 10.1038/343133a0. [DOI] [PubMed] [Google Scholar]
  20. Heuser J. E., Keen J. Deep-etch visualization of proteins involved in clathrin assembly. J Cell Biol. 1988 Sep;107(3):877–886. doi: 10.1083/jcb.107.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hoekstra D., Düzgüneş N. Ricinus communis agglutinin-mediated agglutination and fusion of glycolipid-containing phospholipid vesicles: effect of carbohydrate head group size, calcium ions, and spermine. Biochemistry. 1986 Mar 25;25(6):1321–1330. doi: 10.1021/bi00354a020. [DOI] [PubMed] [Google Scholar]
  22. Keen J. H., Beck K. A. Identification of the clathrin-binding domain of assembly protein AP-2. Biochem Biophys Res Commun. 1989 Jan 16;158(1):17–23. doi: 10.1016/s0006-291x(89)80170-6. [DOI] [PubMed] [Google Scholar]
  23. Keen J. H. Clathrin assembly proteins: affinity purification and a model for coat assembly. J Cell Biol. 1987 Nov;105(5):1989–1998. doi: 10.1083/jcb.105.5.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Keen J. H., Willingham M. C., Pastan I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell. 1979 Feb;16(2):303–312. doi: 10.1016/0092-8674(79)90007-2. [DOI] [PubMed] [Google Scholar]
  25. Kirchhausen T., Nathanson K. L., Matsui W., Vaisberg A., Chow E. P., Burne C., Keen J. H., Davis A. E. Structural and functional division into two domains of the large (100- to 115-kDa) chains of the clathrin-associated protein complex AP-2. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2612–2616. doi: 10.1073/pnas.86.8.2612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Maezawa S., Yoshimura T. Assembly of clathrin molecules on liposome membranes: a possible event necessary for induction of membrane fusion. Biochem Biophys Res Commun. 1990 Nov 30;173(1):134–140. doi: 10.1016/s0006-291x(05)81032-0. [DOI] [PubMed] [Google Scholar]
  27. Maezawa S., Yoshimura T., Hong K., Düzgüneş N., Papahadjopoulos D. Mechanism of protein-induced membrane fusion: fusion of phospholipid vesicles by clathrin associated with its membrane binding and conformational change. Biochemistry. 1989 Feb 7;28(3):1422–1428. doi: 10.1021/bi00429a071. [DOI] [PubMed] [Google Scholar]
  28. Mayorga L. S., Diaz R., Colombo M. I., Stahl P. D. GTP gamma S stimulation of endosome fusion suggests a role for a GTP-binding protein in the priming of vesicles before fusion. Cell Regul. 1989 Nov;1(1):113–124. doi: 10.1091/mbc.1.1.113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mayorga L. S., Diaz R., Stahl P. D. Plasma membrane-derived vesicles containing receptor-ligand complexes are fusogenic with early endosomes in a cell-free system. J Biol Chem. 1988 Nov 25;263(33):17213–17216. [PubMed] [Google Scholar]
  30. Mayorga L. S., Diaz R., Stahl P. D. Regulatory role for GTP-binding proteins in endocytosis. Science. 1989 Jun 23;244(4911):1475–1477. doi: 10.1126/science.2499930. [DOI] [PubMed] [Google Scholar]
  31. Meers P., Bentz J., Alford D., Nir S., Papahadjopoulos D., Hong K. Synexin enhances the aggregation rate but not the fusion rate of liposomes. Biochemistry. 1988 Jun 14;27(12):4430–4439. doi: 10.1021/bi00412a033. [DOI] [PubMed] [Google Scholar]
  32. Murphy J. E., Pleasure I. T., Puszkin S., Prasad K., Keen J. H. Clathrin assembly protein AP-3. The identity of the 155K protein, AP 180, and NP185 and demonstration of a clathrin binding domain. J Biol Chem. 1991 Mar 5;266(7):4401–4408. [PubMed] [Google Scholar]
  33. Parton R. G., Prydz K., Bomsel M., Simons K., Griffiths G. Meeting of the apical and basolateral endocytic pathways of the Madin-Darby canine kidney cell in late endosomes. J Cell Biol. 1989 Dec;109(6 Pt 2):3259–3272. doi: 10.1083/jcb.109.6.3259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pearse B. M. Receptors compete for adaptors found in plasma membrane coated pits. EMBO J. 1988 Nov;7(11):3331–3336. doi: 10.1002/j.1460-2075.1988.tb03204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Prasad K., Keen J. H. Interaction of assembly protein AP-2 and its isolated subunits with clathrin. Biochemistry. 1991 Jun 4;30(22):5590–5597. doi: 10.1021/bi00236a036. [DOI] [PubMed] [Google Scholar]
  36. Robinson M. S. 100-kD coated vesicle proteins: molecular heterogeneity and intracellular distribution studied with monoclonal antibodies. J Cell Biol. 1987 Apr;104(4):887–895. doi: 10.1083/jcb.104.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rodman J. S., Mercer R. W., Stahl P. D. Endocytosis and transcytosis. Curr Opin Cell Biol. 1990 Aug;2(4):664–672. doi: 10.1016/0955-0674(90)90108-q. [DOI] [PubMed] [Google Scholar]
  38. Salzman N. H., Maxfield F. R. Fusion accessibility of endocytic compartments along the recycling and lysosomal endocytic pathways in intact cells. J Cell Biol. 1989 Nov;109(5):2097–2104. doi: 10.1083/jcb.109.5.2097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stegmann T., Doms R. W., Helenius A. Protein-mediated membrane fusion. Annu Rev Biophys Biophys Chem. 1989;18:187–211. doi: 10.1146/annurev.bb.18.060189.001155. [DOI] [PubMed] [Google Scholar]
  40. Struck D. K., Hoekstra D., Pagano R. E. Use of resonance energy transfer to monitor membrane fusion. Biochemistry. 1981 Jul 7;20(14):4093–4099. doi: 10.1021/bi00517a023. [DOI] [PubMed] [Google Scholar]
  41. Sugiura Y. Structure of molecular aggregates of 1-(3-sn-phosphatidyl)-L-myo-inositol 3,4-bis(phosphate) in water. Biochim Biophys Acta. 1981 Feb 20;641(1):148–159. doi: 10.1016/0005-2736(81)90578-2. [DOI] [PubMed] [Google Scholar]
  42. Voglmaier S. M., Keen J. H., Murphy J. E., Ferris C. D., Prestwich G. D., Snyder S. H., Theibert A. B. Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2. Biochem Biophys Res Commun. 1992 Aug 31;187(1):158–163. doi: 10.1016/s0006-291x(05)81473-1. [DOI] [PubMed] [Google Scholar]
  43. White J., Helenius A. pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3273–3277. doi: 10.1073/pnas.77.6.3273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. White J., Matlin K., Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol. 1981 Jun;89(3):674–679. doi: 10.1083/jcb.89.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wilschut J., Hoekstra D. Membrane fusion: lipid vesicles as a model system. Chem Phys Lipids. 1986 Jun-Jul;40(2-4):145–166. doi: 10.1016/0009-3084(86)90068-x. [DOI] [PubMed] [Google Scholar]
  46. Wilschut J. Intracellular membrane fusion. Curr Opin Cell Biol. 1989 Aug;1(4):639–647. doi: 10.1016/0955-0674(89)90028-8. [DOI] [PubMed] [Google Scholar]
  47. Zaremba S., Keen J. H. Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J Cell Biol. 1983 Nov;97(5 Pt 1):1339–1347. doi: 10.1083/jcb.97.5.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Zaremba S., Keen J. H. Limited proteolytic digestion of coated vesicle assembly polypeptides abolishes reassembly activity. J Cell Biochem. 1985;28(1):47–58. doi: 10.1002/jcb.240280108. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES