Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 May;34(5):1153–1157. doi: 10.1128/jcm.34.5.1153-1157.1996

Comparison of PCR-based approaches to molecular epidemiologic analysis of Clostridium difficile.

M C Collier 1, F Stock 1, P C DeGirolami 1, M H Samore 1, C P Cartwright 1
PMCID: PMC228972  PMID: 8727893

Abstract

Representative isolates of the 10 serogroups of Clostridium difficile and 39 clinical isolates (30 toxigenic and 9 nontoxigenic), including 5 isolates from a confirmed nosocomial outbreak, were analyzed by using two previously described arbitrary-primer PCR (AP-PCR) molecular typing methodologies (AP-PG05 and AP-ARB11) and PCR ribotyping. The two AP-PCR methods investigated gave comparable results; AP-PG05 and AP-ARB11 identified 8 and 7 groups among the serogroup isolates and classified the clinical isolates into 21 and 20 distinct groups, respectively. PCR ribotyping also identified 8 unique groups among the serogroup isolates but classified the clinical isolates into 23 groups. In addition, when results obtained by the PCR methods were compared with typing data generated by pulsed-field gel electrophoresis (PFGE), PCR ribotyping and PFGE were found to be in agreement for 83% (29 of 35) of isolates typeable by both techniques while AP-PG05 was in agreement with PFGE for 60% (20 of 33) and AP-ARB11 was in agreement with PFGE for only 44% (17 of 36). These results indicate that PCR ribotyping is a more discriminatory approach than AP-PCR for typing C. difficile and, furthermore, that this technique generates results that are in higher concordance with those obtained by using an established method for differentiating isolates of this organism on a molecular level than are results generated by using AP-PCR.

Full Text

The Full Text of this article is available as a PDF (224.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbut F., Mario N., Frottier J., Petit J. C. Use of the arbitrary primer polymerase chain reaction for investigating an outbreak of Clostridium difficile-associated diarrhea in AIDS patients. Eur J Clin Microbiol Infect Dis. 1993 Oct;12(10):794–795. doi: 10.1007/BF02098477. [DOI] [PubMed] [Google Scholar]
  2. Bartlett J. G. Antibiotic-associated diarrhea. Clin Infect Dis. 1992 Oct;15(4):573–581. doi: 10.1093/clind/15.4.573. [DOI] [PubMed] [Google Scholar]
  3. Cartwright C. P., Stock F., Beekmann S. E., Williams E. C., Gill V. J. PCR amplification of rRNA intergenic spacer regions as a method for epidemiologic typing of Clostridium difficile. J Clin Microbiol. 1995 Jan;33(1):184–187. doi: 10.1128/jcm.33.1.184-187.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Clabots C. R., Peterson L. R., Gerding D. N. Characterization of a nosocomial Clostridium difficile outbreak by using plasmid profile typing and clindamycin susceptibility testing. J Infect Dis. 1988 Oct;158(4):731–736. doi: 10.1093/infdis/158.4.731. [DOI] [PubMed] [Google Scholar]
  5. Gürtler V. Typing of Clostridium difficile strains by PCR-amplification of variable length 16S-23S rDNA spacer regions. J Gen Microbiol. 1993 Dec;139(12):3089–3097. doi: 10.1099/00221287-139-12-3089. [DOI] [PubMed] [Google Scholar]
  6. Kato H., Kato N., Watanabe K., Ueno K., Ushijima H., Hashira S., Abe T. Application of typing by pulsed-field gel electrophoresis to the study of Clostridium difficile in a neonatal intensive care unit. J Clin Microbiol. 1994 Sep;32(9):2067–2070. doi: 10.1128/jcm.32.9.2067-2070.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Killgore G. E., Kato H. Use of arbitrary primer PCR to type Clostridium difficile and comparison of results with those by immunoblot typing. J Clin Microbiol. 1994 Jun;32(6):1591–1593. doi: 10.1128/jcm.32.6.1591-1593.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kristjánsson M., Samore M. H., Gerding D. N., DeGirolami P. C., Bettin K. M., Karchmer A. W., Arbeit R. D. Comparison of restriction endonuclease analysis, ribotyping, and pulsed-field gel electrophoresis for molecular differentiation of Clostridium difficile strains. J Clin Microbiol. 1994 Aug;32(8):1963–1969. doi: 10.1128/jcm.32.8.1963-1969.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lyerly D. M., Krivan H. C., Wilkins T. D. Clostridium difficile: its disease and toxins. Clin Microbiol Rev. 1988 Jan;1(1):1–18. doi: 10.1128/cmr.1.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Maslow J. N., Mulligan M. E., Arbeit R. D. Molecular epidemiology: application of contemporary techniques to the typing of microorganisms. Clin Infect Dis. 1993 Aug;17(2):153–164. doi: 10.1093/clinids/17.2.153. [DOI] [PubMed] [Google Scholar]
  11. McFarland L. V., Mulligan M. E., Kwok R. Y., Stamm W. E. Nosocomial acquisition of Clostridium difficile infection. N Engl J Med. 1989 Jan 26;320(4):204–210. doi: 10.1056/NEJM198901263200402. [DOI] [PubMed] [Google Scholar]
  12. McMillin D. E., Muldrow L. L. Typing of toxic strains of Clostridium difficile using DNA fingerprints generated with arbitrary polymerase chain reaction primers. FEMS Microbiol Lett. 1992 Apr 1;71(1):5–9. doi: 10.1016/0378-1097(92)90532-s. [DOI] [PubMed] [Google Scholar]
  13. Prevost G., Jaulhac B., Piemont Y. DNA fingerprinting by pulsed-field gel electrophoresis is more effective than ribotyping in distinguishing among methicillin-resistant Staphylococcus aureus isolates. J Clin Microbiol. 1992 Apr;30(4):967–973. doi: 10.1128/jcm.30.4.967-973.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Saulnier P., Bourneix C., Prévost G., Andremont A. Random amplified polymorphic DNA assay is less discriminant than pulsed-field gel electrophoresis for typing strains of methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1993 Apr;31(4):982–985. doi: 10.1128/jcm.31.4.982-985.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Silva J., Jr, Tang Y. J., Gumerlock P. H. Genotyping of Clostridium difficile isolates. J Infect Dis. 1994 Mar;169(3):661–664. doi: 10.1093/infdis/169.3.661. [DOI] [PubMed] [Google Scholar]
  16. Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., Swaminathan B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995 Sep;33(9):2233–2239. doi: 10.1128/jcm.33.9.2233-2239.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Toma S., Lesiak G., Magus M., Lo H. L., Delmée M. Serotyping of Clostridium difficile. J Clin Microbiol. 1988 Mar;26(3):426–428. doi: 10.1128/jcm.26.3.426-428.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994 Apr;7(2):174–184. doi: 10.1128/cmr.7.2.174. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES