Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Dec 1;119(5):1183–1191. doi: 10.1083/jcb.119.5.1183

Direct visualization of the dystrophin network on skeletal muscle fiber membrane

PMCID: PMC2289725  PMID: 1447296

Abstract

Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene locus, is expressed on the muscle fiber surface. One key to further understanding of the cellular function of dystrophin would be extended knowledge about its subcellular organization. We have shown that dystrophin molecules are not uniformly distributed over the humen, rat, and mouse skeletal muscle fiber surface using three independent methods. Incubation of single-teased muscle fibers with antibodies to dystrophin revealed a network of denser transversal rings (costameres) and finer longitudinal interconnections. Double staining of longitudinal semithin cryosections for dystrophin and alpha-actinin showed spatial juxtaposition of the costameres to the Z bands. Where peripheral myonuclei precluded direct contact of dystrophin to the Z bands the organization of dystrophin was altered into lacunae harboring the myonucleus. These lacunae were surrounded by a dystrophin ring and covered by a more uniform dystrophin veil. Mechanical skinning of single-teased fibers revealed tighter mechanical connection of dystrophin to the plasma membrane than to the underlying internal domain of the muscle fiber. The entire dystrophin network remained preserved in its structure on isolated muscle sarcolemma and identical in appearance to the pattern observed on teased fibers. Therefore, connection of defined areas of plasma membrane or its constituents such as ion channels to single sarcomeres might be a potential function exerted by dystrophin alone or in conjunction with other submembrane cytoskeletal proteins.

Full Text

The Full Text of this article is available as a PDF (7.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arahata K., Hoffman E. P., Kunkel L. M., Ishiura S., Tsukahara T., Ishihara T., Sunohara N., Nonaka I., Ozawa E., Sugita H. Dystrophin diagnosis: comparison of dystrophin abnormalities by immunofluorescence and immunoblot analyses. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7154–7158. doi: 10.1073/pnas.86.18.7154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonilla E., Samitt C. E., Miranda A. F., Hays A. P., Salviati G., DiMauro S., Kunkel L. M., Hoffman E. P., Rowland L. P. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface. Cell. 1988 Aug 12;54(4):447–452. doi: 10.1016/0092-8674(88)90065-7. [DOI] [PubMed] [Google Scholar]
  3. Bonilla E., Schmidt B., Samitt C. E., Miranda A. F., Hays A. P., de Oliveira A. B., Chang H. W., Servidei S., Ricci E., Younger D. S. Normal and dystrophin-deficient muscle fibers in carriers of the gene for Duchenne muscular dystrophy. Am J Pathol. 1988 Dec;133(3):440–445. [PMC free article] [PubMed] [Google Scholar]
  4. Bulfield G., Siller W. G., Wight P. A., Moore K. J. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1189–1192. doi: 10.1073/pnas.81.4.1189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byers T. J., Kunkel L. M., Watkins S. C. The subcellular distribution of dystrophin in mouse skeletal, cardiac, and smooth muscle. J Cell Biol. 1991 Oct;115(2):411–421. doi: 10.1083/jcb.115.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craig S. W., Pardo J. V. Gamma actin, spectrin, and intermediate filament proteins colocalize with vinculin at costameres, myofibril-to-sarcolemma attachment sites. Cell Motil. 1983;3(5-6):449–462. doi: 10.1002/cm.970030513. [DOI] [PubMed] [Google Scholar]
  7. Cullen M. J., Walsh J., Nicholson L. V., Harris J. B. Ultrastructural localization of dystrophin in human muscle by using gold immunolabelling. Proc R Soc Lond B Biol Sci. 1990 May 22;240(1297):197–210. doi: 10.1098/rspb.1990.0034. [DOI] [PubMed] [Google Scholar]
  8. Cullen M. J., Walsh J., Nicholson L. V., Harris J. B., Zubrzycka-Gaarn E. E., Ray P. N., Worton R. G. Immunogold labelling of dystrophin in human muscle, using an antibody to the last 17 amino acids of the C-terminus. Neuromuscul Disord. 1991;1(2):113–119. doi: 10.1016/0960-8966(91)90058-z. [DOI] [PubMed] [Google Scholar]
  9. Ervasti J. M., Campbell K. P. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991 Sep 20;66(6):1121–1131. doi: 10.1016/0092-8674(91)90035-w. [DOI] [PubMed] [Google Scholar]
  10. Hoffman E. P., Brown R. H., Jr, Kunkel L. M. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987 Dec 24;51(6):919–928. doi: 10.1016/0092-8674(87)90579-4. [DOI] [PubMed] [Google Scholar]
  11. Hoffman E. P., Fischbeck K. H., Brown R. H., Johnson M., Medori R., Loike J. D., Harris J. B., Waterston R., Brooke M., Specht L. Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med. 1988 May 26;318(21):1363–1368. doi: 10.1056/NEJM198805263182104. [DOI] [PubMed] [Google Scholar]
  12. Hoffman E. P., Garcia C. A., Chamberlain J. S., Angelini C., Lupski J. R., Fenwick R. Is the carboxyl-terminus of dystrophin required for membrane association? A novel, severe case of Duchenne muscular dystrophy. Ann Neurol. 1991 Oct;30(4):605–610. doi: 10.1002/ana.410300414. [DOI] [PubMed] [Google Scholar]
  13. Hoffman E. P., Kunkel L. M. Dystrophin abnormalities in Duchenne/Becker muscular dystrophy. Neuron. 1989 Jan;2(1):1019–1029. doi: 10.1016/0896-6273(89)90226-2. [DOI] [PubMed] [Google Scholar]
  14. Hoffman E. P., Morgan J. E., Watkins S. C., Partridge T. A. Somatic reversion/suppression of the mouse mdx phenotype in vivo. J Neurol Sci. 1990 Oct;99(1):9–25. doi: 10.1016/0022-510x(90)90195-s. [DOI] [PubMed] [Google Scholar]
  15. Hoffman E. P., Watkins S. C., Slayter H. S., Kunkel L. M. Detection of a specific isoform of alpha-actinin with antisera directed against dystrophin. J Cell Biol. 1989 Feb;108(2):503–510. doi: 10.1083/jcb.108.2.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ibraghimov-Beskrovnaya O., Ervasti J. M., Leveille C. J., Slaughter C. A., Sernett S. W., Campbell K. P. Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature. 1992 Feb 20;355(6362):696–702. doi: 10.1038/355696a0. [DOI] [PubMed] [Google Scholar]
  17. Koenig M., Kunkel L. M. Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility. J Biol Chem. 1990 Mar 15;265(8):4560–4566. [PubMed] [Google Scholar]
  18. Koenig M., Monaco A. P., Kunkel L. M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell. 1988 Apr 22;53(2):219–228. doi: 10.1016/0092-8674(88)90383-2. [DOI] [PubMed] [Google Scholar]
  19. Kramarcy N. R., Sealock R. Dystrophin as a focal adhesion protein. Collocalization with talin and the Mr 48,000 sarcolemmal protein in cultured Xenopus muscle. FEBS Lett. 1990 Nov 12;274(1-2):171–174. doi: 10.1016/0014-5793(90)81356-s. [DOI] [PubMed] [Google Scholar]
  20. Levine B. A., Moir A. J., Patchell V. B., Perry S. V. Binding sites involved in the interaction of actin with the N-terminal region of dystrophin. FEBS Lett. 1992 Feb 17;298(1):44–48. doi: 10.1016/0014-5793(92)80019-d. [DOI] [PubMed] [Google Scholar]
  21. Love D. R., Hill D. F., Dickson G., Spurr N. K., Byth B. C., Marsden R. F., Walsh F. S., Edwards Y. H., Davies K. E. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature. 1989 May 4;339(6219):55–58. doi: 10.1038/339055a0. [DOI] [PubMed] [Google Scholar]
  22. Menke A., Jockusch H. Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse. Nature. 1991 Jan 3;349(6304):69–71. doi: 10.1038/349069a0. [DOI] [PubMed] [Google Scholar]
  23. Moisescu D. G., Thieleczek R. Calcium and strontium concentration changes within skinned muscle preparations following a change in the external bathing solution. J Physiol. 1978 Feb;275:241–262. doi: 10.1113/jphysiol.1978.sp012188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Morandi L., Mora M., Gussoni E., Tedeschi S., Cornelio F. Dystrophin analysis in Duchenne and Becker muscular dystrophy carriers: correlation with intracellular calcium and albumin. Ann Neurol. 1990 Nov;28(5):674–679. doi: 10.1002/ana.410280512. [DOI] [PubMed] [Google Scholar]
  25. Nicholson L. V., Davison K., Falkous G., Harwood C., O'Donnell E., Slater C. R., Harris J. B. Dystrophin in skeletal muscle. I. Western blot analysis using a monoclonal antibody. J Neurol Sci. 1989 Dec;94(1-3):125–136. doi: 10.1016/0022-510x(89)90223-2. [DOI] [PubMed] [Google Scholar]
  26. Nicholson L. V., Johnson M. A., Davison K., O'Donnell E., Falkous G., Barron M., Harris J. B. Dystrophin or a "related protein" in Duchenne muscular dystrophy? Acta Neurol Scand. 1992 Jul;86(1):8–14. doi: 10.1111/j.1600-0404.1992.tb08046.x. [DOI] [PubMed] [Google Scholar]
  27. Nicholson L. V., Johnson M. A., Gardner-Medwin D., Bhattacharya S., Harris J. B. Heterogeneity of dystrophin expression in patients with Duchenne and Becker muscular dystrophy. Acta Neuropathol. 1990;80(3):239–250. doi: 10.1007/BF00294640. [DOI] [PubMed] [Google Scholar]
  28. Pardo J. V., Siliciano J. D., Craig S. W. A vinculin-containing cortical lattice in skeletal muscle: transverse lattice elements ("costameres") mark sites of attachment between myofibrils and sarcolemma. Proc Natl Acad Sci U S A. 1983 Feb;80(4):1008–1012. doi: 10.1073/pnas.80.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pons F., Augier N., Heilig R., Léger J., Mornet D., Léger J. J. Isolated dystrophin molecules as seen by electron microscopy. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7851–7855. doi: 10.1073/pnas.87.20.7851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pons F., Augier N., Léger J. O., Robert A., Tomé F. M., Fardeau M., Voit T., Nicholson L. V., Mornet D., Léger J. J. A homologue of dystrophin is expressed at the neuromuscular junctions of normal individuals and DMD patients, and of normal and mdx mice. Immunological evidence. FEBS Lett. 1991 Apr 22;282(1):161–165. doi: 10.1016/0014-5793(91)80468-i. [DOI] [PubMed] [Google Scholar]
  31. Rojas C. V., Hoffman E. P. Recent advances in dystrophin research. Curr Opin Neurobiol. 1991 Oct;1(3):420–429. doi: 10.1016/0959-4388(91)90064-e. [DOI] [PubMed] [Google Scholar]
  32. Récan D., Chafey P., Leturcq F., Hugnot J. P., Vincent N., Tomé F., Collin H., Simon D., Czernichow P., Nicholson L. V. Are cysteine-rich and COOH-terminal domains of dystrophin critical for sarcolemmal localization? J Clin Invest. 1992 Feb;89(2):712–716. doi: 10.1172/JCI115640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sicinski P., Geng Y., Ryder-Cook A. S., Barnard E. A., Darlison M. G., Barnard P. J. The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science. 1989 Jun 30;244(4912):1578–1580. doi: 10.1126/science.2662404. [DOI] [PubMed] [Google Scholar]
  34. Terracio L., Gullberg D., Rubin K., Craig S., Borg T. K. Expression of collagen adhesion proteins and their association with the cytoskeleton in cardiac myocytes. Anat Rec. 1989 Jan;223(1):62–71. doi: 10.1002/ar.1092230110. [DOI] [PubMed] [Google Scholar]
  35. Voit T., Haas K., Léger J. O., Pons F., Léger J. J. Xp21 dystrophin and 6q dystrophin-related protein. Comparative immunolocalization using multiple antibodies. Am J Pathol. 1991 Nov;139(5):969–976. [PMC free article] [PubMed] [Google Scholar]
  36. Voit T., Patel K., Dunn M. J., Dubowitz V., Strong P. N. Distribution of dystrophin, nebulin and Ricinus communis I (RCA-I)-binding glycoprotein in tissues of normal and mdx mice. J Neurol Sci. 1989 Feb;89(2-3):199–211. doi: 10.1016/0022-510x(89)90022-1. [DOI] [PubMed] [Google Scholar]
  37. Voit T., Stuettgen P., Cremer M., Goebel H. H. Dystrophin as a diagnostic marker in Duchenne and Becker muscular dystrophy. Correlation of immunofluorescence and western blot. Neuropediatrics. 1991 Aug;22(3):152–162. doi: 10.1055/s-2008-1071434. [DOI] [PubMed] [Google Scholar]
  38. Wakayama Y., Shibuya S. Gold-labelled dystrophin molecule in muscle plasmalemma of mdx control mice as seen by electron microscopy of deep etching replica. Acta Neuropathol. 1991;82(3):178–184. doi: 10.1007/BF00294443. [DOI] [PubMed] [Google Scholar]
  39. Watkins S. C., Hoffman E. P., Slayter H. S., Kunkel L. M. Immunoelectron microscopic localization of dystrophin in myofibres. Nature. 1988 Jun 30;333(6176):863–866. doi: 10.1038/333863a0. [DOI] [PubMed] [Google Scholar]
  40. Zubrzycka-Gaarn E. E., Bulman D. E., Karpati G., Burghes A. H., Belfall B., Klamut H. J., Talbot J., Hodges R. S., Ray P. N., Worton R. G. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature. 1988 Jun 2;333(6172):466–469. doi: 10.1038/333466a0. [DOI] [PubMed] [Google Scholar]
  41. Zubrzycka-Gaarn E. E., Hutter O. F., Karpati G., Klamut H. J., Bulman D. E., Hodges R. S., Worton R. G., Ray P. N. Dystrophin is tightly associated with the sarcolemma of mammalian skeletal muscle fibers. Exp Cell Res. 1991 Jan;192(1):278–288. doi: 10.1016/0014-4827(91)90187-y. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES