Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Dec 2;119(6):1515–1521. doi: 10.1083/jcb.119.6.1515

Protein kinase C activation antagonizes melatonin-induced pigment aggregation in Xenopus laevis melanophores

PMCID: PMC2289739  PMID: 1334961

Abstract

The pineal hormone, melatonin (5-methoxy N-acetyltryptamine) induces a rapid aggregation of melanin-containing pigment granules in isolated melanophores of Xenopus laevis. Treatment of melanophores with activators of protein kinase C (PKC), including phorbol esters, mezerein and a synthetic diacylglycerol, did not affect pigment granule distribution but did prevent and reverse melatonin-induced pigment aggregation. This effect was blocked by an inhibitor of PKC, Ro 31- 8220. The inhibitory effect was not a direct effect on melatonin receptors, per se, as the slow aggregation induced by a high concentration of an inhibitor of cyclic AMP-dependent protein kinase (PKA), adenosine 3',5'-cyclic monophosphothioate, Rp-diastereomer (Rp- cAMPS), was also reversed by PKC activation. Presumably activation of PKC, like PKA activation, stimulates the intracellular machinery involved in the centrifugal translocation of pigment granules along microtubules. alpha-Melanocyte stimulating hormone (alpha-MSH), like PKC activators, overcame melatonin-induced aggregation but this response was not blocked by the PKC inhibitor, Ro 31-8220. This data indicates that centrifugal translocation (dispersion) of pigment granules in Xenopus melanophores can be triggered by activation of either PKA, as occurs after alpha-MSH treatment, or PKC. The very slow aggregation in response to inhibition of PKA with high concentrations of Rp-cAMPS, suggests that the rapid aggregation in response to melatonin may involve multiple intracellular signals in addition to the documented Gi-mediated inhibition of adenylate cyclase.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe K., Robison G. A., Liddle G. W., Butcher R. W., Nicholson W. E., Baird C. E. Role of cyclic AMP in mediating the effects of MSH, norepinephrine, and melatonin on frog skin color. Endocrinology. 1969 Oct;85(4):674–682. doi: 10.1210/endo-85-4-674. [DOI] [PubMed] [Google Scholar]
  2. Beckerle M. C., Porter K. R. Inhibitors of dynein activity block intracellular transport in erythrophores. Nature. 1982 Feb 25;295(5851):701–703. doi: 10.1038/295701a0. [DOI] [PubMed] [Google Scholar]
  3. Botelho L. H., Rothermel J. D., Coombs R. V., Jastorff B. cAMP analog antagonists of cAMP action. Methods Enzymol. 1988;159:159–172. doi: 10.1016/0076-6879(88)59017-1. [DOI] [PubMed] [Google Scholar]
  4. Braumann T., Erneux C., Petridis G., Stohrer W. D., Jastorff B. Hydrolysis of cyclic nucleotides by a purified cGMP-stimulated phosphodiesterase: structural requirements for hydrolysis. Biochim Biophys Acta. 1986 Jun 5;871(2):199–206. doi: 10.1016/0167-4838(86)90174-3. [DOI] [PubMed] [Google Scholar]
  5. Buffey J., Thody A. J., Bleehen S. S., Mac Neil S. Alpha-melanocyte-stimulating hormone stimulates protein kinase C activity in murine B16 melanoma. J Endocrinol. 1992 Jun;133(3):333–340. doi: 10.1677/joe.0.1330333. [DOI] [PubMed] [Google Scholar]
  6. Carlson L. L., Weaver D. R., Reppert S. M. Melatonin signal transduction in hamster brain: inhibition of adenylyl cyclase by a pertussis toxin-sensitive G protein. Endocrinology. 1989 Nov;125(5):2670–2676. doi: 10.1210/endo-125-5-2670. [DOI] [PubMed] [Google Scholar]
  7. Clark T. G., Rosenbaum J. L. Pigment particle translocation in detergent-permeabilized melanophores of Fundulus heteroclitus. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4655–4659. doi: 10.1073/pnas.79.15.4655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Daniolos A., Lerner A. B., Lerner M. R. Action of light on frog pigment cells in culture. Pigment Cell Res. 1990 Jan-Feb;3(1):38–43. doi: 10.1111/j.1600-0749.1990.tb00260.x. [DOI] [PubMed] [Google Scholar]
  9. Davis P. D., Hill C. H., Keech E., Lawton G., Nixon J. S., Sedgwick A. D., Wadsworth J., Westmacott D., Wilkinson S. E. Potent selective inhibitors of protein kinase C. FEBS Lett. 1989 Dec 18;259(1):61–63. doi: 10.1016/0014-5793(89)81494-2. [DOI] [PubMed] [Google Scholar]
  10. DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
  11. Ide H. Further studies on the hormonal control of melanophores and iridophores isolated from bullfrog tadpoles. Gen Comp Endocrinol. 1974 Nov;24(3):341–345. doi: 10.1016/0016-6480(74)90189-0. [DOI] [PubMed] [Google Scholar]
  12. Ide H. Proliferation of amphibian melanophores in vitro. Dev Biol. 1974 Dec;41(2):380–384. doi: 10.1016/0012-1606(74)90314-5. [DOI] [PubMed] [Google Scholar]
  13. Jakobs K. H., Aktories K., Minuth M., Schultz G. Inhibition of adenylate cyclase. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1985;19:137–150. [PubMed] [Google Scholar]
  14. Krause D. N., Dubocovich M. L. Melatonin receptors. Annu Rev Pharmacol Toxicol. 1991;31:549–568. doi: 10.1146/annurev.pa.31.040191.003001. [DOI] [PubMed] [Google Scholar]
  15. Luby-Phelps K., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). II. The role of calcium. Cell. 1982 Jun;29(2):441–450. doi: 10.1016/0092-8674(82)90160-x. [DOI] [PubMed] [Google Scholar]
  16. Lynch T. J., Taylor J. D., Tchen T. T. Regulation of pigment organelle translocation. I. Phosphorylation of the organelle-associated protein p57. J Biol Chem. 1986 Mar 25;261(9):4204–4211. [PubMed] [Google Scholar]
  17. Lynch T. J., Wu B. Y., Taylor J. D., Tchen T. T. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase. J Biol Chem. 1986 Mar 25;261(9):4212–4216. [PubMed] [Google Scholar]
  18. McGuire J., Moellmann G., McKeon F. Cytochalasin B and pigment granule translocation. Cytochalasin B reverses and prevents pigment granule dispersion caused by dibutyryl cyclic AMP and theophylline in Rana pipiens Melanocytes. J Cell Biol. 1972 Mar;52(3):754–758. doi: 10.1083/jcb.52.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McNiven M. A., Ward J. B. Calcium regulation of pigment transport in vitro. J Cell Biol. 1988 Jan;106(1):111–125. doi: 10.1083/jcb.106.1.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Messenger E. A., Warner A. E. The action of melatonin on single amphibian pigment cells in tissue culture. Br J Pharmacol. 1977 Dec;61(4):607–614. doi: 10.1111/j.1476-5381.1977.tb07554.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paterson A., Chong N. W., Brinklow B. R., Loudon A. S., Sugden D. Characterization of 2-[125I]iodomelatonin binding sites in the brain of a marsupial, Bennett's wallaby (Macropus rufogriseus rufogriseus). Comp Biochem Physiol Comp Physiol. 1992 May;102(1):55–58. doi: 10.1016/0300-9629(92)90011-e. [DOI] [PubMed] [Google Scholar]
  22. Rodionov V. I., Gyoeva F. K., Gelfand V. I. Kinesin is responsible for centrifugal movement of pigment granules in melanophores. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4956–4960. doi: 10.1073/pnas.88.11.4956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rothermel J. D., Parker Botelho L. H. A mechanistic and kinetic analysis of the interactions of the diastereoisomers of adenosine 3',5'-(cyclic)phosphorothioate with purified cyclic AMP-dependent protein kinase. Biochem J. 1988 May 1;251(3):757–762. doi: 10.1042/bj2510757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rozdzial M. M., Haimo L. T. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell. 1986 Dec 26;47(6):1061–1070. doi: 10.1016/0092-8674(86)90821-4. [DOI] [PubMed] [Google Scholar]
  25. Rozdzial M. M., Haimo L. T. Reactivated melanophore motility: differential regulation and nucleotide requirements of bidirectional pigment granule transport. J Cell Biol. 1986 Dec;103(6 Pt 2):2755–2764. doi: 10.1083/jcb.103.6.2755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sammak P. J., Adams S. R., Harootunian A. T., Schliwa M., Tsien R. Y. Intracellular cyclic AMP not calcium, determines the direction of vesicle movement in melanophores: direct measurement by fluorescence ratio imaging. J Cell Biol. 1992 Apr;117(1):57–72. doi: 10.1083/jcb.117.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sugden D. Aggregation of pigment granules in single cultured Xenopus laevis melanophores by melatonin analogues. Br J Pharmacol. 1991 Dec;104(4):922–927. doi: 10.1111/j.1476-5381.1991.tb12527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sugden D., Chong N. W. Pharmacological identity of 2-[125I]iodomelatonin binding sites in chicken brain and sheep pars tuberalis. Brain Res. 1991 Jan 18;539(1):151–154. doi: 10.1016/0006-8993(91)90698-u. [DOI] [PubMed] [Google Scholar]
  29. Thaler C. D., Haimo L. T. Regulation of organelle transport in melanophores by calcineurin. J Cell Biol. 1990 Nov;111(5 Pt 1):1939–1948. doi: 10.1083/jcb.111.5.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Vanecek J., Klein D. C. Melatonin inhibits gonadotropin-releasing hormone-induced elevation of intracellular Ca2+ in neonatal rat pituitary cells. Endocrinology. 1992 Feb;130(2):701–707. doi: 10.1210/endo.130.2.1733718. [DOI] [PubMed] [Google Scholar]
  31. Vanecek J., Vollrath L. Melatonin inhibits cyclic AMP and cyclic GMP accumulation in the rat pituitary. Brain Res. 1989 Dec 25;505(1):157–159. doi: 10.1016/0006-8993(89)90129-7. [DOI] [PubMed] [Google Scholar]
  32. Vanecek J., Vollrath L. Melatonin modulates diacylglycerol and arachidonic acid metabolism in the anterior pituitary of immature rats. Neurosci Lett. 1990 Mar 2;110(1-2):199–203. doi: 10.1016/0304-3940(90)90811-m. [DOI] [PubMed] [Google Scholar]
  33. White B. H., Sekura R. D., Rollag M. D. Pertussis toxin blocks melatonin-induced pigment aggregation in Xenopus dermal melanophores. J Comp Physiol B. 1987;157(2):153–159. doi: 10.1007/BF00692359. [DOI] [PubMed] [Google Scholar]
  34. van de Veerdonk F. C., Konijn T. M. The role of adenosine 3'-5'-cyclic monophosphate and catecholamines in the pigment migration process in Xenopus laevis. Acta Endocrinol (Copenh) 1970 Jun;64(2):364–376. doi: 10.1530/acta.0.0640364. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES