Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Dec 2;119(6):1657–1667. doi: 10.1083/jcb.119.6.1657

Cell surface acetylcholinesterase molecules on multinucleated myotubes are clustered over the nucleus of origin

PMCID: PMC2289756  PMID: 1469054

Abstract

Multinucleated skeletal muscle fibers are compartmentalized with respect to the expression and organization of several intracellular and cell surface proteins including acetylcholinesterase (AChE). Mosaic muscle fibers formed from homozygous myoblasts expressing two allelic variants of AChE preferentially translate and assemble the polypeptides in the vicinity of the nucleus encoding the mRNA (Rotundo, R. L. 1990. J. Cell Biol. 110:715-719). To determine whether the locally synthesized AChE molecules are targeted to specific regions of the myotube surface, primary quail myoblasts were mixed with mononucleated cells of the mouse muscle C2/C12 cell line and allowed to fuse, forming heterospecific mosaic myotubes. Cell surface enzyme was localized by immunofluorescence using an avian AChE-specific monoclonal antibody. HOECHST 33342 was used to distinguish between quail and mouse nuclei in myotubes. Over 80% of the quail nuclei exhibited clusters of cell surface AChE in mosaic quail-mouse myotubes, whereas only 4% of the mouse nuclei had adjacent quail AChE-positive regions of membrane, all of which were located next to a quail nucleus. In contrast, membrane proteins such as Na+/K+ ATPase, which are not restricted to specific regions of the myotube surface, are free to diffuse over the entire length of the fiber. These studies indicate that the AChE molecules expressed in multinucleated muscle fibers are preferentially transported and localized to regions of surface membrane overlying the nucleus of origin. This targeting could play an important role in establishing and maintaining specialized cell surface domains such as the neuromuscular and myotendinous junctions.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayne E. K., Anderson M. J., Fambrough D. M. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J Cell Biol. 1984 Oct;99(4 Pt 1):1486–1501. doi: 10.1083/jcb.99.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beam K. G., Caldwell J. H., Campbell D. T. Na channels in skeletal muscle concentrated near the neuromuscular junction. Nature. 1985 Feb 14;313(6003):588–590. doi: 10.1038/313588a0. [DOI] [PubMed] [Google Scholar]
  3. Betz W. J., Caldwell J. H., Kinnamon S. C. Increased sodium conductance in the synaptic region of rat skeletal muscle fibres. J Physiol. 1984 Jul;352:189–202. doi: 10.1113/jphysiol.1984.sp015286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Betz W., Sakmann B. Effects of proteolytic enzymes on function and structure of frog neuromuscular junctions. J Physiol. 1973 May;230(3):673–688. doi: 10.1113/jphysiol.1973.sp010211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bloch R. J., Pumplin D. W. Molecular events in synaptogenesis: nerve-muscle adhesion and postsynaptic differentiation. Am J Physiol. 1988 Mar;254(3 Pt 1):C345–C364. doi: 10.1152/ajpcell.1988.254.3.C345. [DOI] [PubMed] [Google Scholar]
  6. Brandan E., Maldonado M., Garrido J., Inestrosa N. C. Anchorage of collagen-tailed acetylcholinesterase to the extracellular matrix is mediated by heparan sulfate proteoglycans. J Cell Biol. 1985 Sep;101(3):985–992. doi: 10.1083/jcb.101.3.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brenner H. R., Witzemann V., Sakmann B. Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature. 1990 Apr 5;344(6266):544–547. doi: 10.1038/344544a0. [DOI] [PubMed] [Google Scholar]
  8. Bruner J. M., Bursztajn S. Acetylcholine receptor clusters are associated with nuclei in rat myotubes. Dev Biol. 1986 May;115(1):35–43. doi: 10.1016/0012-1606(86)90225-3. [DOI] [PubMed] [Google Scholar]
  9. Bursztajn S., Berman S. A., Gilbert W. Differential expression of acetylcholine receptor mRNA in nuclei of cultured muscle cells. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2928–2932. doi: 10.1073/pnas.86.8.2928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Englander L. L., Rubin L. L. Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture. J Cell Biol. 1987 Jan;104(1):87–95. doi: 10.1083/jcb.104.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  12. Fontaine B., Sassoon D., Buckingham M., Changeux J. P. Detection of the nicotinic acetylcholine receptor alpha-subunit mRNA by in situ hybridization at neuromuscular junctions of 15-day-old chick striated muscles. EMBO J. 1988 Mar;7(3):603–609. doi: 10.1002/j.1460-2075.1988.tb02853.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Froehner S. C. The submembrane machinery for nicotinic acetylcholine receptor clustering. J Cell Biol. 1991 Jul;114(1):1–7. doi: 10.1083/jcb.114.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Godfrey E. W., Nitkin R. M., Wallace B. G., Rubin L. L., McMahan U. J. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J Cell Biol. 1984 Aug;99(2):615–627. doi: 10.1083/jcb.99.2.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldman D., Staple J. Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle. Neuron. 1989 Aug;3(2):219–228. doi: 10.1016/0896-6273(89)90035-4. [DOI] [PubMed] [Google Scholar]
  16. Gordon H., Ralston E., Hall Z. W. Cooperation between the products of different nuclei in hybrid myotubes produces localized acetylcholine receptor clusters. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6595–6598. doi: 10.1073/pnas.89.14.6595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hall Z. W., Kelly R. B. Enzymatic detachment of endplate acetylcholinesterase from muscle. Nat New Biol. 1971 Jul 14;232(28):62–63. doi: 10.1038/newbio232062a0. [DOI] [PubMed] [Google Scholar]
  18. Hall Z. W., Ralston E. Nuclear domains in muscle cells. Cell. 1989 Dec 1;59(5):771–772. doi: 10.1016/0092-8674(89)90597-7. [DOI] [PubMed] [Google Scholar]
  19. Harris D. A., Falls D. L., Fischbach G. D. Differential activation of myotube nuclei following exposure to an acetylcholine receptor-inducing factor. Nature. 1989 Jan 12;337(6203):173–176. doi: 10.1038/337173a0. [DOI] [PubMed] [Google Scholar]
  20. Horovitz O., Knaack D., Podleski T. R., Salpeter M. M. Acetylcholine receptor alpha-subunit mRNA is increased by ascorbic acid in cloned L5 muscle cells: Northern blot analysis and in situ hybridization. J Cell Biol. 1989 May;108(5):1823–1832. doi: 10.1083/jcb.108.5.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hunter D. D., Shah V., Merlie J. P., Sanes J. R. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature. 1989 Mar 16;338(6212):229–234. doi: 10.1038/338229a0. [DOI] [PubMed] [Google Scholar]
  22. Inestrosa N. C., Silberstein L., Hall Z. W. Association of the synaptic form of acetylcholinesterase with extracellular matrix in cultured mouse muscle cells. Cell. 1982 May;29(1):71–79. doi: 10.1016/0092-8674(82)90091-5. [DOI] [PubMed] [Google Scholar]
  23. Jasmin B. J., Cartaud J., Bornens M., Changeux J. P. Golgi apparatus in chick skeletal muscle: changes in its distribution during end plate development and after denervation. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7218–7222. doi: 10.1073/pnas.86.18.7218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jasmin B. J., Changeux J. P., Cartaud J. Compartmentalization of cold-stable and acetylated microtubules in the subsynaptic domain of chick skeletal muscle fibre. Nature. 1990 Apr 12;344(6267):673–675. doi: 10.1038/344673a0. [DOI] [PubMed] [Google Scholar]
  25. Johnson C. D., Russell R. L. A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal Biochem. 1975 Mar;64(1):229–238. doi: 10.1016/0003-2697(75)90423-6. [DOI] [PubMed] [Google Scholar]
  26. KOELLE G. B., FRIEDENWALD J. A. A histochemical method for localizing cholinesterase activity. Proc Soc Exp Biol Med. 1949 Apr;70(4):617–622. doi: 10.3181/00379727-70-17013. [DOI] [PubMed] [Google Scholar]
  27. McMahan U. J., Sanes J. R., Marshall L. M. Cholinesterase is associated with the basal lamina at the neuromuscular junction. Nature. 1978 Jan 12;271(5641):172–174. doi: 10.1038/271172a0. [DOI] [PubMed] [Google Scholar]
  28. Merlie J. P., Sanes J. R. Concentration of acetylcholine receptor mRNA in synaptic regions of adult muscle fibres. Nature. 1985 Sep 5;317(6032):66–68. doi: 10.1038/317066a0. [DOI] [PubMed] [Google Scholar]
  29. Metsikkö K., Hentunen T., Vänänen K. Local expression and exocytosis of viral glycoproteins in multinucleated muscle cells. J Cell Biol. 1992 Jun;117(5):987–995. doi: 10.1083/jcb.117.5.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pavlath G. K., Rich K., Webster S. G., Blau H. M. Localization of muscle gene products in nuclear domains. Nature. 1989 Feb 9;337(6207):570–573. doi: 10.1038/337570a0. [DOI] [PubMed] [Google Scholar]
  31. Porter-Jordan K., Benson R. J., Buoniconti P., Fine R. E. An acetylcholinesterase-mediated density shift technique demonstrates that coated vesicles from chick myotubes may contain both newly synthesized acetylcholinesterase and acetylcholine receptors. J Neurosci. 1986 Nov;6(11):3112–3119. doi: 10.1523/JNEUROSCI.06-11-03112.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pumplin D. W., Fambrough D. M. (Na+ + K+)-ATPase correlated with a major group of intramembrane particles in freeze-fracture replicas of cultured chick myotubes. J Cell Biol. 1983 Oct;97(4):1214–1225. doi: 10.1083/jcb.97.4.1214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ralston E., Hall Z. W. Intracellular and surface distribution of a membrane protein (CD8) derived from a single nucleus in multinucleated myotubes. J Cell Biol. 1989 Nov;109(5):2345–2352. doi: 10.1083/jcb.109.5.2345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Ralston E., Hall Z. W. Transfer of a protein encoded by a single nucleus to nearby nuclei in multinucleated myotubes. Science. 1989 Jun 2;244(4908):1066–1069. doi: 10.1126/science.2543074. [DOI] [PubMed] [Google Scholar]
  35. Ramírez G., Barat A., Fernández H. L. Interaction of asymmetric and globular acetylcholinesterase species with glycosaminoglycans. J Neurochem. 1990 May;54(5):1761–1768. doi: 10.1111/j.1471-4159.1990.tb01231.x. [DOI] [PubMed] [Google Scholar]
  36. Rotundo R. L. Asymmetric acetylcholinesterase is assembled in the Golgi apparatus. Proc Natl Acad Sci U S A. 1984 Jan;81(2):479–483. doi: 10.1073/pnas.81.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rotundo R. L., Fambrough D. M. Molecular forms of chicken embryo acetylcholinesterase in vitro and in vivo. Isolation and characterization. J Biol Chem. 1979 Jun 10;254(11):4790–4799. [PubMed] [Google Scholar]
  38. Rotundo R. L., Fambrough D. M. Secretion of acetylcholinesterase: relation to acetylcholine receptor metabolism. Cell. 1980 Nov;22(2 Pt 2):595–602. doi: 10.1016/0092-8674(80)90369-4. [DOI] [PubMed] [Google Scholar]
  39. Rotundo R. L., Fambrough D. M. Synthesis, transport and fate of acetylcholinesterase in cultured chick embryos muscle cells. Cell. 1980 Nov;22(2 Pt 2):583–594. doi: 10.1016/0092-8674(80)90368-2. [DOI] [PubMed] [Google Scholar]
  40. Rotundo R. L., Gomez A. M., Fernandez-Valle C., Randall W. R. Allelic variants of acetylcholinesterase: genetic evidence that all acetylcholinesterase forms in avian nerves and muscles are encoded by a single gene. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7805–7809. doi: 10.1073/pnas.85.20.7805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rotundo R. L. Nucleus-specific translation and assembly of acetylcholinesterase in multinucleated muscle cells. J Cell Biol. 1990 Mar;110(3):715–719. doi: 10.1083/jcb.110.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rotundo R. L. Purification and properties of the membrane-bound form of acetylcholinesterase from chicken brain. Evidence for two distinct polypeptide chains. J Biol Chem. 1984 Nov 10;259(21):13186–13194. [PubMed] [Google Scholar]
  43. Shadiack A. M., Nitkin R. M. Agrin induces alpha-actinin, filamin, and vinculin to co-localize with AChR clusters on cultured chick myotubes. J Neurobiol. 1991 Sep;22(6):617–628. doi: 10.1002/neu.480220607. [DOI] [PubMed] [Google Scholar]
  44. Torres J. C., Inestrosa N. C. Interaction of heparin with multimolecular aggregates of acetylcholinesterase. Cell Mol Neurobiol. 1985 Sep;5(3):303–309. doi: 10.1007/BF00711015. [DOI] [PubMed] [Google Scholar]
  45. Tsim K. W., Greenberg I., Rimer M., Randall W. R., Salpeter M. M. Transcripts for the acetylcholine receptor and acetylcholine esterase show distribution differences in cultured chick muscle cells. J Cell Biol. 1992 Sep;118(5):1201–1212. doi: 10.1083/jcb.118.5.1201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vigny M., Martin G. R., Grotendorst G. R. Interactions of asymmetric forms of acetylcholinesterase with basement membrane components. J Biol Chem. 1983 Jul 25;258(14):8794–8798. [PubMed] [Google Scholar]
  47. Wallace B. G. Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J Neurosci. 1989 Apr;9(4):1294–1302. doi: 10.1523/JNEUROSCI.09-04-01294.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wallace B. G., Nitkin R. M., Reist N. E., Fallon J. R., Moayeri N. N., McMahan U. J. Aggregates of acetylcholinesterase induced by acetylcholine receptor-aggregating factor. Nature. 1985 Jun 13;315(6020):574–577. doi: 10.1038/315574a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES