Abstract
High resistance epithelia express on their apical side an amiloride- sensitive sodium channel that controls sodium reabsorption. A cDNA was found to encode a 1,420-amino acid long polypeptide with no signal sequence, a putative transmembrane segment, and three predicted amphipathic alpha helices. A corresponding 5.2-kb mRNA was detected in Xenopus laevis kidney, intestine, and oocytes, with weak expression in stomach and eyes. An antibody directed against a fusion protein containing a COOH-terminus segment of the protein and an antiidiotypic antibody known to recognize the amiloride binding site of the epithelial sodium channel (Kleyman, T. R., J.-P. Kraehenbuhl, and S. A. Ernst. 1991. J. Biol. Chem. 266:3907-3915) immunoprecipitated a similar protein complex from [35S]methionine-labeled and from apically radioiodinated Xenopus laevis kidney-derived A6 cells. A single integral of 130-kD protein was recovered from samples reduced with DTT. The antibody also cross-reacted by ELISA with the putative amiloride- sensitive sodium channel isolated from A6 cells (Benos, D. J., G. Saccomani, and S. Sariban-Sohraby. 1987. J. Biol. Chem. 262:10613- 10618). Although the protein is translated, cRNA injected into oocytes did not reconstitute amiloride-sensitive sodium transport, while antisense RNA or antisense oligodeoxynucleotides specific for two distinct sequences of the cloned cDNA inhibited amiloride-sensitive sodium current induced by injection of A6 cell mRNA. We propose that the cDNA encodes an apical plasma membrane protein that plays a role in the functional expression of the amiloride-sensitive epithelial sodium channel. It may represent a subunit of the Xenopus laevis sodium channel or a regulatory protein essential for sodium channel function.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ausiello D. A., Stow J. L., Cantiello H. F., de Almeida J. B., Benos D. J. Purified epithelial Na+ channel complex contains the pertussis toxin-sensitive G alpha i-3 protein. J Biol Chem. 1992 Mar 5;267(7):4759–4765. [PubMed] [Google Scholar]
- Barbry P., Champe M., Chassande O., Munemitsu S., Champigny G., Lingueglia E., Maes P., Frelin C., Tartar A., Ullrich A. Human kidney amiloride-binding protein: cDNA structure and functional expression. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7347–7351. doi: 10.1073/pnas.87.19.7347. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barbry P., Chassande O., Marsault R., Lazdunski M., Frelin C. [3H]phenamil binding protein of the renal epithelium Na+ channel. Purification, affinity labeling, and functional reconstitution. Biochemistry. 1990 Jan 30;29(4):1039–1045. doi: 10.1021/bi00456a028. [DOI] [PubMed] [Google Scholar]
- Barbry P., Chassande O., Vigne P., Frelin C., Ellory C., Cragoe E. J., Jr, Lazdunski M. Purification and subunit structure of the [3H]phenamil receptor associated with the renal apical Na+ channel. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4836–4840. doi: 10.1073/pnas.84.14.4836. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benos D. J., Saccomani G., Sariban-Sohraby S. The epithelial sodium channel. Subunit number and location of the amiloride binding site. J Biol Chem. 1987 Aug 5;262(22):10613–10618. [PubMed] [Google Scholar]
- Biggers J. D., Bell J. E., Benos D. J. Mammalian blastocyst: transport functions in a developing epithelium. Am J Physiol. 1988 Oct;255(4 Pt 1):C419–C432. doi: 10.1152/ajpcell.1988.255.4.C419. [DOI] [PubMed] [Google Scholar]
- Colman A. Antisense strategies in cell and developmental biology. J Cell Sci. 1990 Nov;97(Pt 3):399–409. doi: 10.1242/jcs.97.3.399. [DOI] [PubMed] [Google Scholar]
- Garty H., Benos D. J. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol Rev. 1988 Apr;68(2):309–373. doi: 10.1152/physrev.1988.68.2.309. [DOI] [PubMed] [Google Scholar]
- Geering K., Meyer D. I., Paccolat M. P., Kraehenbühl J. P., Rossier B. C. Membrane insertion of alpha- and beta-subunits of Na+,K+-ATPase. J Biol Chem. 1985 Apr 25;260(8):5154–5160. [PubMed] [Google Scholar]
- Geering K. Subunit assembly and functional maturation of Na,K-ATPase. J Membr Biol. 1990 May;115(2):109–121. doi: 10.1007/BF01869450. [DOI] [PubMed] [Google Scholar]
- George A. L., Jr, Staub O., Geering K., Rossier B. C., Kleyman T. R., Kraehenbuhl J. P. Functional expression of the amiloride-sensitive sodium channel in Xenopus oocytes. Proc Natl Acad Sci U S A. 1989 Sep;86(18):7295–7298. doi: 10.1073/pnas.86.18.7295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamilton K. L., Eaton D. C. Single-channel recordings from two types of amiloride-sensitive epithelial Na+ channels. Membr Biochem. 1986;6(2):149–171. doi: 10.3109/09687688609065447. [DOI] [PubMed] [Google Scholar]
- Hediger M. A., Coady M. J., Ikeda T. S., Wright E. M. Expression cloning and cDNA sequencing of the Na+/glucose co-transporter. 1987 Nov 26-Dec 2Nature. 330(6146):379–381. doi: 10.1038/330379a0. [DOI] [PubMed] [Google Scholar]
- Hinton C. F., Eaton D. C. Expression of amiloride-blockable sodium channels in Xenopus oocytes. Am J Physiol. 1989 Oct;257(4 Pt 1):C825–C829. doi: 10.1152/ajpcell.1989.257.4.C825. [DOI] [PubMed] [Google Scholar]
- Horisberger J. D., Jaunin P., Good P. J., Rossier B. C., Geering K. Coexpression of alpha 1 with putative beta 3 subunits results in functional Na+/K+ pumps in Xenopus oocytes. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8397–8400. doi: 10.1073/pnas.88.19.8397. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hubbard A. L., Cohn Z. A. Externally disposed plasma membrane proteins. I. Enzymatic iodination of mouse L cells. J Cell Biol. 1975 Feb;64(2):438–460. doi: 10.1083/jcb.64.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jentsch T. J., Steinmeyer K., Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature. 1990 Dec 6;348(6301):510–514. doi: 10.1038/348510a0. [DOI] [PubMed] [Google Scholar]
- Kleyman T. R., Cragoe E. J., Jr, Kraehenbuhl J. P. The cellular pool of Na+ channels in the amphibian cell line A6 is not altered by mineralocorticoids. Analysis using a new photoactive amiloride analog in combination with anti-amiloride antibodies. J Biol Chem. 1989 Jul 15;264(20):11995–12000. [PubMed] [Google Scholar]
- Kleyman T. R., Kraehenbuhl J. P., Ernst S. A. Characterization and cellular localization of the epithelial Na+ channel. Studies using an anti-Na+ channel antibody raised by an antiidiotypic route. J Biol Chem. 1991 Feb 25;266(6):3907–3915. [PubMed] [Google Scholar]
- Kozak M. The scanning model for translation: an update. J Cell Biol. 1989 Feb;108(2):229–241. doi: 10.1083/jcb.108.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krattenmacher R., Voigt R., Clauss W. Ca-sensitive sodium absorption in the colon of Xenopus laevis. J Comp Physiol B. 1990;160(2):161–165. doi: 10.1007/BF00300948. [DOI] [PubMed] [Google Scholar]
- Kroll B., Bautsch W., Bremer S., Wilke M., Tümmler B., Frömter E. Selective expression of an amiloride-inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes. Am J Physiol. 1989 Oct;257(4 Pt 1):L284–L288. doi: 10.1152/ajplung.1989.257.4.L284. [DOI] [PubMed] [Google Scholar]
- Lewis S. A., Clausen C. Urinary proteases degrade epithelial sodium channels. J Membr Biol. 1991 May;122(1):77–88. doi: 10.1007/BF01872741. [DOI] [PubMed] [Google Scholar]
- Machen T. E., Silen W., Forte J. G. Na+ transport by mammalian stomach. Am J Physiol. 1978 Mar;234(3):E228–E235. doi: 10.1152/ajpendo.1978.234.3.E228. [DOI] [PubMed] [Google Scholar]
- Marston F. A., Angal S., White S., Lowe P. A. Solubilization and activation of recombinant calf prochymosin from Escherichia coli. Biochem Soc Trans. 1985 Dec;13(6):1035–1035. doi: 10.1042/bst0131035. [DOI] [PubMed] [Google Scholar]
- Melton D. A. Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc Natl Acad Sci U S A. 1985 Jan;82(1):144–148. doi: 10.1073/pnas.82.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noda M., Shimizu S., Tanabe T., Takai T., Kayano T., Ikeda T., Takahashi H., Nakayama H., Kanaoka Y., Minamino N. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature. 1984 Nov 8;312(5990):121–127. doi: 10.1038/312121a0. [DOI] [PubMed] [Google Scholar]
- Palmer L. G., Corthesy-Theulaz I., Gaeggeler H. P., Kraehenbuhl J. P., Rossier B. Expression of epithelial Na channels in Xenopus oocytes. J Gen Physiol. 1990 Jul;96(1):23–46. doi: 10.1085/jgp.96.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer L. G., Frindt G. Amiloride-sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2767–2770. doi: 10.1073/pnas.83.8.2767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peitsch M. C., Amiguet P., Guy R., Brunner J., Maizel J. V., Jr, Tschopp J. Localization and molecular modelling of the membrane-inserted domain of the ninth component of human complement and perforin. Mol Immunol. 1990 Jul;27(7):589–602. doi: 10.1016/0161-5890(90)90001-g. [DOI] [PubMed] [Google Scholar]
- Probst E., Kressmann A., Birnstiel M. L. Expression of sea urchin histone genes in the oocyte of Xenopus laevis. J Mol Biol. 1979 Dec 15;135(3):709–732. doi: 10.1016/0022-2836(79)90173-6. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sariban-Sohraby S., Abramow M., Fisher R. S. Single-channel behavior of a purified epithelial Na+ channel subunit that binds amiloride. Am J Physiol. 1992 Nov;263(5 Pt 1):C1111–C1117. doi: 10.1152/ajpcell.1992.263.5.C1111. [DOI] [PubMed] [Google Scholar]
- Sariban-Sohraby S., Benos D. J. Detergent solubilization, functional reconstitution, and partial purification of epithelial amiloride-binding protein. Biochemistry. 1986 Aug 12;25(16):4639–4646. doi: 10.1021/bi00364a028. [DOI] [PubMed] [Google Scholar]
- Shuttleworth J., Colman A. Antisense oligonucleotide-directed cleavage of mRNA in Xenopus oocytes and eggs. EMBO J. 1988 Feb;7(2):427–434. doi: 10.1002/j.1460-2075.1988.tb02830.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. R., Benos D. J. Epithelial Na+ channels. Annu Rev Physiol. 1991;53:509–530. doi: 10.1146/annurev.ph.53.030191.002453. [DOI] [PubMed] [Google Scholar]
- Sorscher E. J., Accavitti M. A., Keeton D., Steadman E., Frizzell R. A., Benos D. J. Antibodies against purified epithelial sodium channel protein from bovine renal papilla. Am J Physiol. 1988 Dec;255(6 Pt 1):C835–C843. doi: 10.1152/ajpcell.1988.255.6.C835. [DOI] [PubMed] [Google Scholar]
- Stanley K. K., Luzio J. P. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 1984 Jun;3(6):1429–1434. doi: 10.1002/j.1460-2075.1984.tb01988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Verrey F., Kairouz P., Schaerer E., Fuentes P., Geering K., Rossier B. C., Kraehenbuhl J. P. Primary sequence of Xenopus laevis Na+-K+-ATPase and its localization in A6 kidney cells. Am J Physiol. 1989 Jun;256(6 Pt 2):F1034–F1043. doi: 10.1152/ajprenal.1989.256.6.F1034. [DOI] [PubMed] [Google Scholar]
- Werner A., Moore M. L., Mantei N., Biber J., Semenza G., Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9608–9612. doi: 10.1073/pnas.88.21.9608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeiske W., Wills N. K., Van Driessche W. Na+ channels and amiloride-induced noise in the mammalian colon epithelium. Biochim Biophys Acta. 1982 May 21;688(1):201–210. doi: 10.1016/0005-2736(82)90595-8. [DOI] [PubMed] [Google Scholar]