Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Dec 2;119(6):1481–1495. doi: 10.1083/jcb.119.6.1481

Trafficking of malarial proteins to the host cell cytoplasm and erythrocyte surface membrane involves multiple pathways

PMCID: PMC2289760  PMID: 1469045

Abstract

During the asexual stage of malaria infection, the intracellular parasite exports membranes into the erythrocyte cytoplasm and lipids and proteins to the host cell membrane, essentially "transforming" the erythrocyte. To investigate lipid and protein trafficking pathways within Plasmodium falciparum-infected erythrocytes, synchronous cultures are temporally analyzed by confocal fluorescence imaging microscopy for the production, location and morphology of exported membranes (vesicles) and parasite proteins. Highly mobile vesicles are observed as early as 4 h postinvasion in the erythrocyte cytoplasm of infected erythrocytes incubated in vitro with C6-NBD-labeled phospholipids. These vesicles are most prevalent in the trophozoite stage. An immunofluorescence technique is developed to simultaneously determine the morphology and distribution of the fluorescent membranes and a number of parasite proteins within a single parasitized erythrocyte. Parasite proteins are visualized with FITC- or Texas red- labeled monoclonal antibodies. Double-label immunofluorescence reveals that of the five parasite antigens examined, only one was predominantly associated with membranes in the erythrocyte cytoplasm. Two other parasite antigens localized only in part to these vesicles, with the majority of the exported antigens present in lipid-free aggregates in the host cell cytoplasm. Another parasite antigen transported into the erythrocyte cytoplasm is localized exclusively in lipid-free aggregates. A parasite plasma membrane (PPM) and/or parasitophorous vacuolar membrane (PVM) antigen which is not exported always colocalizes with fluorescent lipids in the PPM/PVM. Visualization of two parasite proteins simultaneously using FITC- and Texas red-labeled 2 degrees antibodies reveals that some parasite proteins are constitutively transported in the same vesicles, whereas other are segregated before export. Of the four exported antigens, only one appears to cross the barriers of the PPM and PVM through membrane- mediated events, whereas the others are exported across the PPM/PVM to the host cell cytoplasm and surface membrane through lipid (vesicle)- independent pathways.

Full Text

The Full Text of this article is available as a PDF (4.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M. Human cerebral malaria. Am J Trop Med Hyg. 1988 Jul;39(1):3–10. doi: 10.4269/ajtmh.1988.39.3. [DOI] [PubMed] [Google Scholar]
  2. Aikawa M., Iseki M., Barnwell J. W., Taylor D., Oo M. M., Howard R. J. The pathology of human cerebral malaria. Am J Trop Med Hyg. 1990 Aug;43(2 Pt 2):30–37. doi: 10.4269/ajtmh.1990.43.30. [DOI] [PubMed] [Google Scholar]
  3. Aikawa M., Uni Y., Andrutis A. T., Howard R. J. Membrane-associated electron-dense material of the asexual stages of Plasmodium falciparum: evidence for movement from the intracellular parasite to the erythrocyte membrane. Am J Trop Med Hyg. 1986 Jan;35(1):30–36. doi: 10.4269/ajtmh.1986.35.30. [DOI] [PubMed] [Google Scholar]
  4. Aley S. B., Sherwood J. A., Howard R. J. Knob-positive and knob-negative Plasmodium falciparum differ in expression of a strain-specific malarial antigen on the surface of infected erythrocytes. J Exp Med. 1984 Nov 1;160(5):1585–1590. doi: 10.1084/jem.160.5.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ardeshir F., Flint J. E., Matsumoto Y., Aikawa M., Reese R. T., Stanley H. cDNA sequence encoding a Plasmodium falciparum protein associated with knobs and localization of the protein to electron-dense regions in membranes of infected erythrocytes. EMBO J. 1987 May;6(5):1421–1427. doi: 10.1002/j.1460-2075.1987.tb02383.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Atkinson C. T., Aikawa M., Perry G., Fujino T., Bennett V., Davidson E. A., Howard R. J. Ultrastructural localization of erythrocyte cytoskeletal and integral membrane proteins in Plasmodium falciparum-infected erythrocytes. Eur J Cell Biol. 1988 Feb;45(2):192–199. [PubMed] [Google Scholar]
  7. Atkinson C. T., Aikawa M. Ultrastructure of malaria-infected erythrocytes. Blood Cells. 1990;16(2-3):351–368. [PubMed] [Google Scholar]
  8. Bardwell J. C., Craig E. A. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci U S A. 1984 Feb;81(3):848–852. doi: 10.1073/pnas.81.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Barnwell J. W., Asch A. S., Nachman R. L., Yamaya M., Aikawa M., Ingravallo P. A human 88-kD membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes. J Clin Invest. 1989 Sep;84(3):765–772. doi: 10.1172/JCI114234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Barnwell J. W. Vesicle-mediated transport of membrane and proteins in malaria-infected erythrocytes. Blood Cells. 1990;16(2-3):379–395. [PubMed] [Google Scholar]
  11. Bianco A. E., Favaloro J. M., Burkot T. R., Culvenor J. G., Crewther P. E., Brown G. V., Anders R. F., Coppel R. L., Kemp D. J. A repetitive antigen of Plasmodium falciparum that is homologous to heat shock protein 70 of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8713–8717. doi: 10.1073/pnas.83.22.8713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Coppel R. L., Cowman A. F., Lingelbach K. R., Brown G. V., Saint R. B., Kemp D. J., Anders R. F. Isolate-specific S-antigen of Plasmodium falciparum contains a repeated sequence of eleven amino acids. Nature. 1983 Dec 22;306(5945):751–756. doi: 10.1038/306751a0. [DOI] [PubMed] [Google Scholar]
  13. Coppel R. L., Lustigman S., Murray L., Anders R. F. MESA is a Plasmodium falciparum phosphoprotein associated with the erythrocyte membrane skeleton. Mol Biochem Parasitol. 1988 Dec;31(3):223–231. doi: 10.1016/0166-6851(88)90152-1. [DOI] [PubMed] [Google Scholar]
  14. Etzion Z., Perkins M. E. Localization of a parasite encoded protein to erythrocyte cytoplasmic vesicles of Plasmodium falciparum-infected cells. Eur J Cell Biol. 1989 Apr;48(2):174–179. [PubMed] [Google Scholar]
  15. Green T. J., Gadsden G., Seed T., Jacobs R., Morhardt M., Brackett R. Cloning and characterization of Plasmodium falciparum FCR-3/FMG strain. Am J Trop Med Hyg. 1985 Jan;34(1):24–30. doi: 10.4269/ajtmh.1985.34.24. [DOI] [PubMed] [Google Scholar]
  16. Grellier P., Rigomier D., Clavey V., Fruchart J. C., Schrevel J. Lipid traffic between high density lipoproteins and Plasmodium falciparum-infected red blood cells. J Cell Biol. 1991 Jan;112(2):267–277. doi: 10.1083/jcb.112.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Haldar K., Uyetake L. The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes. Mol Biochem Parasitol. 1992 Jan;50(1):161–177. doi: 10.1016/0166-6851(92)90253-g. [DOI] [PubMed] [Google Scholar]
  18. Haldar K., de Amorim A. F., Cross G. A. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells. J Cell Biol. 1989 Jun;108(6):2183–2192. doi: 10.1083/jcb.108.6.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Handunnetti S. M., Pasloske B. L., van Schravendijk M. R., Aguiar J. C., Taraschi T. F., Gormley J. A., Howard R. J. The characterization of two monoclonal antibodies which react with high molecular weight antigens of asexual Plasmodium falciparum. Mol Biochem Parasitol. 1992 Sep;54(2):231–246. doi: 10.1016/0166-6851(92)90115-z. [DOI] [PubMed] [Google Scholar]
  20. Howard R. J., Barnwell J. W., Rock E. P., Neequaye J., Ofori-Adjei D., Maloy W. L., Lyon J. A., Saul A. Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):207–223. doi: 10.1016/0166-6851(88)90040-0. [DOI] [PubMed] [Google Scholar]
  21. Howard R. J., Lyon J. A., Uni S., Saul A. J., Aley S. B., Klotz F., Panton L. J., Sherwood J. A., Marsh K., Aikawa M. Transport of an Mr approximately 300,000 Plasmodium falciparum protein (Pf EMP 2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. J Cell Biol. 1987 May;104(5):1269–1280. doi: 10.1083/jcb.104.5.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Howard R. J., Uni S., Aikawa M., Aley S. B., Leech J. H., Lew A. M., Wellems T. E., Rener J., Taylor D. W. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. J Cell Biol. 1986 Oct;103(4):1269–1277. doi: 10.1083/jcb.103.4.1269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hsiao L. L., Howard R. J., Aikawa M., Taraschi T. F. Modification of host cell membrane lipid composition by the intra-erythrocytic human malaria parasite Plasmodium falciparum. Biochem J. 1991 Feb 15;274(Pt 1):121–132. doi: 10.1042/bj2740121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kang P. J., Ostermann J., Shilling J., Neupert W., Craig E. A., Pfanner N. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature. 1990 Nov 8;348(6297):137–143. doi: 10.1038/348137a0. [DOI] [PubMed] [Google Scholar]
  25. Kilejian A. Characterization of a protein correlated with the production of knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4650–4653. doi: 10.1073/pnas.76.9.4650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Knapp B., Hundt E., Lingelbach K. R. Structure and possible function of Plasmodium falciparum proteins exported to the erythrocyte membrane. Parasitol Res. 1991;77(4):277–282. doi: 10.1007/BF00930901. [DOI] [PubMed] [Google Scholar]
  27. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  28. Leech J. H., Barnwell J. W., Aikawa M., Miller L. H., Howard R. J. Plasmodium falciparum malaria: association of knobs on the surface of infected erythrocytes with a histidine-rich protein and the erythrocyte skeleton. J Cell Biol. 1984 Apr;98(4):1256–1264. doi: 10.1083/jcb.98.4.1256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Leech J. H., Barnwell J. W., Miller L. H., Howard R. J. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J Exp Med. 1984 Jun 1;159(6):1567–1575. doi: 10.1084/jem.159.6.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lenstra R., Samso A., Andrieu B., Le Bras J., Galibert F. Viruslike particles containing knob-associated histidine-rich protein are secreted into the culture medium of Plasmodium falciparum in vitro cultures. Biochem Biophys Res Commun. 1988 Mar 15;151(2):749–757. doi: 10.1016/s0006-291x(88)80344-9. [DOI] [PubMed] [Google Scholar]
  31. Lindquist S. The heat-shock response. Annu Rev Biochem. 1986;55:1151–1191. doi: 10.1146/annurev.bi.55.070186.005443. [DOI] [PubMed] [Google Scholar]
  32. Maguire P. A., Prudhomme J., Sherman I. W. Alterations in erythrocyte membrane phospholipid organization due to the intracellular growth of the human malaria parasite, Plasmodium falciparum. Parasitology. 1991 Apr;102(Pt 2):179–186. doi: 10.1017/s0031182000062466. [DOI] [PubMed] [Google Scholar]
  33. Maguire P. A., Sherman I. W. Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol Biochem Parasitol. 1990 Jan 1;38(1):105–112. doi: 10.1016/0166-6851(90)90210-d. [DOI] [PubMed] [Google Scholar]
  34. McLean I. W., Nakane P. K. Periodate-lysine-paraformaldehyde fixative. A new fixation for immunoelectron microscopy. J Histochem Cytochem. 1974 Dec;22(12):1077–1083. doi: 10.1177/22.12.1077. [DOI] [PubMed] [Google Scholar]
  35. Pouvelle B., Spiegel R., Hsiao L., Howard R. J., Morris R. L., Thomas A. P., Taraschi T. F. Direct access to serum macromolecules by intraerythrocytic malaria parasites. Nature. 1991 Sep 5;353(6339):73–75. doi: 10.1038/353073a0. [DOI] [PubMed] [Google Scholar]
  36. Rock E. P., Marsh K., Saul A. J., Wellems T. E., Taylor D. W., Maloy W. L., Howard R. J. Comparative analysis of the Plasmodium falciparum histidine-rich proteins HRP-I, HRP-II and HRP-III in malaria parasites of diverse origin. Parasitology. 1987 Oct;95(Pt 2):209–227. doi: 10.1017/s0031182000057681. [DOI] [PubMed] [Google Scholar]
  37. Rock E. P., Saul A. J., Taylor D. W., Leech J. H., Sherwood J. A., Howard R. J. Expression of the histidine-rich protein PfHRP1 by knob-positive Plasmodium falciparum is not sufficient for cytoadherence of infected erythrocytes. Infect Immun. 1988 Dec;56(12):3301–3304. doi: 10.1128/iai.56.12.3301-3304.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schleyer M., Neupert W. Transport of proteins into mitochondria: translocational intermediates spanning contact sites between outer and inner membranes. Cell. 1985 Nov;43(1):339–350. doi: 10.1016/0092-8674(85)90039-x. [DOI] [PubMed] [Google Scholar]
  39. Sherman I. W. Biochemistry of Plasmodium (malarial parasites). Microbiol Rev. 1979 Dec;43(4):453–495. doi: 10.1128/mr.43.4.453-495.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stanley H. A., Langreth S. G., Reese R. T. Plasmodium falciparum antigens associated with membrane structures in the host erythrocyte cytoplasm. Mol Biochem Parasitol. 1989 Sep;36(2):139–149. doi: 10.1016/0166-6851(89)90186-2. [DOI] [PubMed] [Google Scholar]
  41. Stenzel D. J., Kara U. A. Sorting of malarial antigens into vesicular compartments within the host cell cytoplasm as demonstrated by immunoelectron microscopy. Eur J Cell Biol. 1989 Aug;49(2):311–318. [PubMed] [Google Scholar]
  42. Taraschi T. F., Parashar A., Hooks M., Rubin H. Perturbation of red cell membrane structure during intracellular maturation of Plasmodium falciparum. Science. 1986 Apr 4;232(4746):102–104. doi: 10.1126/science.3006251. [DOI] [PubMed] [Google Scholar]
  43. Taylor D. W., Parra M., Chapman G. B., Stearns M. E., Rener J., Aikawa M., Uni S., Aley S. B., Panton L. J., Howard R. J. Localization of Plasmodium falciparum histidine-rich protein 1 in the erythrocyte skeleton under knobs. Mol Biochem Parasitol. 1987 Sep;25(2):165–174. doi: 10.1016/0166-6851(87)90005-3. [DOI] [PubMed] [Google Scholar]
  44. Trager W., Jensen J. B. Human malaria parasites in continuous culture. Science. 1976 Aug 20;193(4254):673–675. doi: 10.1126/science.781840. [DOI] [PubMed] [Google Scholar]
  45. Udomsangpetch R., Aikawa M., Berzins K., Wahlgren M., Perlmann P. Cytoadherence of knobless Plasmodium falciparum-infected erythrocytes and its inhibition by a human monoclonal antibody. Nature. 1989 Apr 27;338(6218):763–765. doi: 10.1038/338763a0. [DOI] [PubMed] [Google Scholar]
  46. Udomsangpetch R., Carlsson J., Wåhlin B., Holmquist G., Ozaki L. S., Scherf A., Mattei D., Mercereau-Puijalon O., Uni S., Aikawa M. Reactivity of the human monoclonal antibody 33G2 with repeated sequences of three distinct Plasmodium falciparum antigens. J Immunol. 1989 May 15;142(10):3620–3626. [PubMed] [Google Scholar]
  47. Vial H. J., Thuet M. J., Broussal J. L., Philippot J. R. Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospohlipid precursors and the identification of previously undetected metabolic pathways. J Parasitol. 1982 Jun;68(3):379–391. [PubMed] [Google Scholar]
  48. Wellems T. E., Howard R. J. Homologous genes encode two distinct histidine-rich proteins in a cloned isolate of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6065–6069. doi: 10.1073/pnas.83.16.6065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. de Rojas M. O., Wasserman M. Temporal relationships on macromolecular synthesis during the asexual cell cycle of Plasmodium falciparum. Trans R Soc Trop Med Hyg. 1985;79(6):792–796. doi: 10.1016/0035-9203(85)90119-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES