Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Aug 2;114(4):651–656. doi: 10.1083/jcb.114.4.651

Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER

PMCID: PMC2289885  PMID: 1651336

Abstract

Maturation of rotavirus occurs in the ER. The virus transiently acquires an ER-derived membrane surrounding the virus particle before the eventual formation of double-shelled particles. The maturation process includes the retention and selective loss of specific viral protein(s) as well as the ER-derived membrane during formation of the outer capsid of the mature virus. When infected cells were depleted of Ca++ by use of the ionophore A23187 in calcium-free medium, membrane- enveloped intermediates were seen to accumulate. When Mn++, an efficient Ca++ competitor, was used to replace Ca++ in the medium, the accumulation of the enveloped intermediate was again observed, pointing to an absolute requirement of Ca++ in the maturation process. It was previously demonstrated in this laboratory that a hetero-oligomeric complex of NS28, VP7, and VP4 exists which may participate in the budding of the single-shelled particle into the ER (Maass, D. R., and P. H. Atkinson, 1990. J. Virol. 64:2632-2641). The present study demonstrates that either in the absence of Ca++ or in the presence of tunicamycin, a glycosylation inhibitor, VP7 is excluded from these hetero-oligomers. In the presence of Mn++, VP4 was blocked in forming a hetero-oligomeric complex with NS28 and VP7. The electrophoretic mobility of the viral glycoproteins synthesized in the presence of the ionophore were found to be altered. This size difference was attributed to altered N-linked glycosylation and carbohydrate processing of the viral glycoproteins. These results imply a major role for calcium and the state of glycosylation of NS28 in the assembly and acquisition of specific viral protein conformations necessary for the correct association of proteins during virus maturation in the ER.

Full Text

The Full Text of this article is available as a PDF (2.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenburg B. C., Graham D. Y., Estes M. K. Ultrastructural study of rotavirus replication in cultured cells. J Gen Virol. 1980 Jan;46(1):75–85. doi: 10.1099/0022-1317-46-1-75. [DOI] [PubMed] [Google Scholar]
  2. Au K. S., Chan W. K., Burns J. W., Estes M. K. Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol. 1989 Nov;63(11):4553–4562. doi: 10.1128/jvi.63.11.4553-4562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckers C. J., Keller D. S., Balch W. E. Semi-intact cells permeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex. Cell. 1987 Aug 14;50(4):523–534. doi: 10.1016/0092-8674(87)90025-0. [DOI] [PubMed] [Google Scholar]
  4. Bergmann C. C., Maass D., Poruchynsky M. S., Atkinson P. H., Bellamy A. R. Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. EMBO J. 1989 Jun;8(6):1695–1703. doi: 10.1002/j.1460-2075.1989.tb03561.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Booth C., Koch G. L. Perturbation of cellular calcium induces secretion of luminal ER proteins. Cell. 1989 Nov 17;59(4):729–737. doi: 10.1016/0092-8674(89)90019-6. [DOI] [PubMed] [Google Scholar]
  6. Estes M. K., Palmer E. L., Obijeski J. F. Rotaviruses: a review. Curr Top Microbiol Immunol. 1983;105:123–184. doi: 10.1007/978-3-642-69159-1_3. [DOI] [PubMed] [Google Scholar]
  7. Kabcenell A. K., Poruchynsky M. S., Bellamy A. R., Greenberg H. B., Atkinson P. H. Two forms of VP7 are involved in assembly of SA11 rotavirus in endoplasmic reticulum. J Virol. 1988 Aug;62(8):2929–2941. doi: 10.1128/jvi.62.8.2929-2941.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Koch G. L., Booth C., Wooding F. B. Dissociation and re-assembly of the endoplasmic reticulum in live cells. J Cell Sci. 1988 Dec;91(Pt 4):511–522. doi: 10.1242/jcs.91.4.511. [DOI] [PubMed] [Google Scholar]
  9. Liu M., Offit P. A., Estes M. K. Identification of the simian rotavirus SA11 genome segment 3 product. Virology. 1988 Mar;163(1):26–32. doi: 10.1016/0042-6822(88)90230-9. [DOI] [PubMed] [Google Scholar]
  10. Lodish H. F., Kong N. Perturbation of cellular calcium blocks exit of secretory proteins from the rough endoplasmic reticulum. J Biol Chem. 1990 Jul 5;265(19):10893–10899. [PubMed] [Google Scholar]
  11. Maass D. R., Atkinson P. H. Rotavirus proteins VP7, NS28, and VP4 form oligomeric structures. J Virol. 1990 Jun;64(6):2632–2641. doi: 10.1128/jvi.64.6.2632-2641.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Meyer J. C., Bergmann C. C., Bellamy A. R. Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology. 1989 Jul;171(1):98–107. doi: 10.1016/0042-6822(89)90515-1. [DOI] [PubMed] [Google Scholar]
  13. Petrie B. L., Estes M. K., Graham D. Y. Effects of tunicamycin on rotavirus morphogenesis and infectivity. J Virol. 1983 Apr;46(1):270–274. doi: 10.1128/jvi.46.1.270-274.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ready K. F., Sabara M. I., Babiuk L. A. In vitro assembly of the outer capsid of bovine rotavirus is calcium-dependent. Virology. 1988 Nov;167(1):269–273. doi: 10.1016/0042-6822(88)90077-3. [DOI] [PubMed] [Google Scholar]
  15. Ready K. F., Sabara M. In vitro assembly of bovine rotavirus nucleocapsid protein. Virology. 1987 Mar;157(1):189–198. doi: 10.1016/0042-6822(87)90328-x. [DOI] [PubMed] [Google Scholar]
  16. Sabara M., Babiuk L. A., Gilchrist J., Misra V. Effect of tunicamycin on rotavirus assembly and infectivity. J Virol. 1982 Sep;43(3):1082–1090. doi: 10.1128/jvi.43.3.1082-1090.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sambrook J. F. The involvement of calcium in transport of secretory proteins from the endoplasmic reticulum. Cell. 1990 Apr 20;61(2):197–199. doi: 10.1016/0092-8674(90)90798-j. [DOI] [PubMed] [Google Scholar]
  18. Schutzbach J. S., Forsee W. T. Calcium ion activation of rabbit liver alpha 1,2-mannosidase. J Biol Chem. 1990 Feb 15;265(5):2546–2549. [PubMed] [Google Scholar]
  19. Shahrabadi M. S., Babiuk L. A., Lee P. W. Further analysis of the role of calcium in rotavirus morphogenesis. Virology. 1987 May;158(1):103–111. doi: 10.1016/0042-6822(87)90242-x. [DOI] [PubMed] [Google Scholar]
  20. Shahrabadi M. S., Lee P. W. Bovine rotavirus maturation is a calcium-dependent process. Virology. 1986 Jul 30;152(2):298–307. doi: 10.1016/0042-6822(86)90133-9. [DOI] [PubMed] [Google Scholar]
  21. Soler C., Musalem C., Loroño M., Espejo R. T. Association of viral particles and viral proteins with membranes in SA11-infected cells. J Virol. 1982 Dec;44(3):983–992. doi: 10.1128/jvi.44.3.983-992.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Street J. E., Croxson M. C., Chadderton W. F., Bellamy A. R. Sequence diversity of human rotavirus strains investigated by northern blot hybridization analysis. J Virol. 1982 Aug;43(2):369–378. doi: 10.1128/jvi.43.2.369-378.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES