Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Aug 2;114(4):841–846. doi: 10.1083/jcb.114.4.841

Substratum-growth factor collaborations are required for the mitogenic activities of activin and FGF on embryonal carcinoma cells

PMCID: PMC2289893  PMID: 1869590

Abstract

When P19 mouse embryonal carcinoma cells are grown in a serum-free N2 medium on surfaces of tissue culture plastic, they die within two days. The death of these P19 cells is prevented by activin A and basic FGF (bFGF). The cells do not divide under these conditions. However, when P19 cells are cultured on substrata of extracellular matrix proteins such as laminin and fibronectin, activin A and bFGF are potent mitogens. These data show that the substratum to which cells are exposed can regulate their mitogenic response to growth factors.

Full Text

The Full Text of this article is available as a PDF (733.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banga H. S., Simons E. R., Brass L. F., Rittenhouse S. E. Activation of phospholipases A and C in human platelets exposed to epinephrine: role of glycoproteins IIb/IIIa and dual role of epinephrine. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9197–9201. doi: 10.1073/pnas.83.23.9197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breuer D., Wagener C. Activation of the phosphatidylinositol cycle in spreading cells. Exp Cell Res. 1989 Jun;182(2):659–663. doi: 10.1016/0014-4827(89)90268-1. [DOI] [PubMed] [Google Scholar]
  4. Davis C. G. The many faces of epidermal growth factor repeats. New Biol. 1990 May;2(5):410–419. [PubMed] [Google Scholar]
  5. Dike L. E., Farmer S. R. Cell adhesion induces expression of growth-associated genes in suspension-arrested fibroblasts. Proc Natl Acad Sci U S A. 1988 Sep;85(18):6792–6796. doi: 10.1073/pnas.85.18.6792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Edwards M. K., McBurney M. W. The concentration of retinoic acid determines the differentiated cell types formed by a teratocarcinoma cell line. Dev Biol. 1983 Jul;98(1):187–191. doi: 10.1016/0012-1606(83)90348-2. [DOI] [PubMed] [Google Scholar]
  7. Ferrell J. E., Jr, Martin G. S. Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2234–2238. doi: 10.1073/pnas.86.7.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
  9. Grant D. S., Tashiro K., Segui-Real B., Yamada Y., Martin G. R., Kleinman H. K. Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell. 1989 Sep 8;58(5):933–943. doi: 10.1016/0092-8674(89)90945-8. [DOI] [PubMed] [Google Scholar]
  10. Hedger M. P., Drummond A. E., Robertson D. M., Risbridger G. P., de Kretser D. M. Inhibin and activin regulate [3H]thymidine uptake by rat thymocytes and 3T3 cells in vitro. Mol Cell Endocrinol. 1989 Jan;61(1):133–138. doi: 10.1016/0303-7207(89)90198-6. [DOI] [PubMed] [Google Scholar]
  11. Ingber D. E., Folkman J. How does extracellular matrix control capillary morphogenesis? Cell. 1989 Sep 8;58(5):803–805. doi: 10.1016/0092-8674(89)90928-8. [DOI] [PubMed] [Google Scholar]
  12. Ingber D. E., Folkman J. Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular matrix. J Cell Biol. 1989 Jul;109(1):317–330. doi: 10.1083/jcb.109.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kojima I., Ogata E. Dual effect of activin A on cell growth in Balb/c 3T3 cells. Biochem Biophys Res Commun. 1989 Mar 31;159(3):1107–1113. doi: 10.1016/0006-291x(89)92223-7. [DOI] [PubMed] [Google Scholar]
  14. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  15. Levine J. M., Flynn P. Cell surface changes accompanying the neural differentiation of an embryonal carcinoma cell line. J Neurosci. 1986 Nov;6(11):3374–3384. doi: 10.1523/JNEUROSCI.06-11-03374.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Li M. L., Aggeler J., Farson D. A., Hatier C., Hassell J., Bissell M. J. Influence of a reconstituted basement membrane and its components on casein gene expression and secretion in mouse mammary epithelial cells. Proc Natl Acad Sci U S A. 1987 Jan;84(1):136–140. doi: 10.1073/pnas.84.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lillien L. E., Sendtner M., Raff M. C. Extracellular matrix-associated molecules collaborate with ciliary neurotrophic factor to induce type-2 astrocyte development. J Cell Biol. 1990 Aug;111(2):635–644. doi: 10.1083/jcb.111.2.635. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Panayotou G., End P., Aumailley M., Timpl R., Engel J. Domains of laminin with growth-factor activity. Cell. 1989 Jan 13;56(1):93–101. doi: 10.1016/0092-8674(89)90987-2. [DOI] [PubMed] [Google Scholar]
  19. Pettmann B., Manthorpe M., Powell J. A., Varon S. Biological activities of nerve growth factor bound to nitrocellulose paper by Western blotting. J Neurosci. 1988 Oct;8(10):3624–3632. doi: 10.1523/JNEUROSCI.08-10-03624.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Porter S., Glaser L., Bunge R. P. Release of autocrine growth factor by primary and immortalized Schwann cells. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7768–7772. doi: 10.1073/pnas.84.21.7768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rogers S. L., Bernard L., Weston J. A. Substratum effects on cell dispersal, morphology, and differentiation in cultures of avian neural crest cells. Dev Biol. 1990 Sep;141(1):173–182. doi: 10.1016/0012-1606(90)90112-v. [DOI] [PubMed] [Google Scholar]
  22. Schubert D., Kimura H., LaCorbiere M., Vaughan J., Karr D., Fischer W. H. Activin is a nerve cell survival molecule. Nature. 1990 Apr 26;344(6269):868–870. doi: 10.1038/344868a0. [DOI] [PubMed] [Google Scholar]
  23. Schwartz M. A., Both G., Lechene C. Effect of cell spreading on cytoplasmic pH in normal and transformed fibroblasts. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4525–4529. doi: 10.1073/pnas.86.12.4525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Spray D. C., Fujita M., Saez J. C., Choi H., Watanabe T., Hertzberg E., Rosenberg L. C., Reid L. M. Proteoglycans and glycosaminoglycans induce gap junction synthesis and function in primary liver cultures. J Cell Biol. 1987 Jul;105(1):541–551. doi: 10.1083/jcb.105.1.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stoker M., O'Neill C., Berryman S., Waxman V. Anchorage and growth regulation in normal and virus-transformed cells. Int J Cancer. 1968 Sep 15;3(5):683–693. doi: 10.1002/ijc.2910030517. [DOI] [PubMed] [Google Scholar]
  26. Tomasek J. J., Hay E. D. Analysis of the role of microfilaments and microtubules in acquisition of bipolarity and elongation of fibroblasts in hydrated collagen gels. J Cell Biol. 1984 Aug;99(2):536–549. doi: 10.1083/jcb.99.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tucker R. W., Butterfield C. E., Folkman J. Interaction of serum and cell spreading affects the growth of neoplastic and non-neoplastic fibroblasts. J Supramol Struct Cell Biochem. 1981;15(1):29–40. doi: 10.1002/jsscb.1981.380150104. [DOI] [PubMed] [Google Scholar]
  28. Vaughan J. M., Rivier J., Corrigan A. Z., McClintock R., Campen C. A., Jolley D., Voglmayr J. K., Bardin C. W., Rivier C., Vale W. Detection and purification of inhibin using antisera generated against synthetic peptide fragments. Methods Enzymol. 1989;168:588–617. doi: 10.1016/0076-6879(89)68044-5. [DOI] [PubMed] [Google Scholar]
  29. Wittelsberger S. C., Kleene K., Penman S. Progressive loss of shape-responsive metabolic controls in cells with increasingly transformed phenotype. Cell. 1981 Jun;24(3):859–866. doi: 10.1016/0092-8674(81)90111-2. [DOI] [PubMed] [Google Scholar]
  30. von der Mark K., Ocalan M. Antagonistic effects of laminin and fibronectin on the expression of the myogenic phenotype. Differentiation. 1989 May;40(2):150–157. doi: 10.1111/j.1432-0436.1989.tb00823.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES