Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Nov 2;115(4):995–1007. doi: 10.1083/jcb.115.4.995

Acquisition of membrane lipids by differentiating glyoxysomes: role of lipid bodies

PMCID: PMC2289935  PMID: 1955468

Abstract

Glyoxysomes in cotyledons of cotton (Gossypium hirsutum, L.) seedlings enlarge dramatically within 48 h after seed imbibition (Kunce, C.M., R.N. Trelease, and D.C. Doman. 1984. Planta (Berl.). 161:156-164) to effect mobilization of stored cotton-seed oil. We discovered that the membranes of enlarging glyoxysomes at all stages examined contained a large percentage (36-62% by weight) of nonpolar lipid, nearly all of which were triacylglycerols (TAGs) and TAG metabolites. Free fatty acids comprised the largest percentage of these nonpolar lipids. Six uncommon (and as yet unidentified) fatty acids constituted the majority (51%) of both the free fatty acids and the fatty acids in TAGs of glyoxysome membranes; the same six uncommon fatty acids were less than 7% of the acyl constituents in TAGs extracted from cotton-seed storage lipid bodies. TAGs of lipid bodies primarily were composed of palmitic, oleic, and linoleic acids (together 70%). Together, these three major storage fatty acids were less than 10% of both the free fatty acids and fatty acids in TAGs of glyoxysome membranes. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) constituted a major portion of glyoxysome membrane phospholipids (together 61% by weight). Pulse-chase radiolabeling experiments in vivo clearly demonstrated that 14C-PC and 14C-PE were synthesized from 14C-choline and 14C-ethanolamine, respectively, in ER of cotyledons, and then transported to mitochondria; however, these lipids were not transported to enlarging glyoxysomes. The lack of ER involvement in glyoxysome membrane phospholipid synthesis, and the similarities in lipid compositions between lipid bodies and membranes of glyoxysomes, led us to formulate and test a new hypothesis whereby lipid bodies serve as the dynamic source of nonpolar lipids and phospholipids for membrane expansion of enlarging glyoxysomes. In a cell-free system, 3H-triolein (TO) and 3H- PC were indeed transferred from lipid bodies to glyoxysomes. 3H-PC, but not 3H-TO, also was transferred to mitochondria in vitro. The amount of lipid transferred increased linearly with respect to time and amount of acceptor organelle protein, and transfer occurred only when lipid body membrane proteins were associated with the donor lipid bodies. 3H-TO was transferred to and incorporated into glyoxysome membranes, and then hydrolyzed to free fatty acids. 3H-PC was transferred to and incorporated into glyoxysome and mitochondria membranes without subsequent hydrolysis. Our data are inconsistent with the hypothesis that ER contributes membrane lipids to glyoxysomes during postgerminative seedling growth.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Trelease R. N., Thomas T. L. Regulation of isocitrate lyase gene expression in sunflower. Plant Physiol. 1988 Feb;86(2):527–532. doi: 10.1104/pp.86.2.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Bishop W. R., Bell R. M. Assembly of phospholipids into cellular membranes: biosynthesis, transmembrane movement and intracellular translocation. Annu Rev Cell Biol. 1988;4:579–610. doi: 10.1146/annurev.cb.04.110188.003051. [DOI] [PubMed] [Google Scholar]
  4. Bortman S. J., Trelease R. N., Miernyk J. A. Enzyme development and glyoxysome characterization in cotyledons of cotton seeds. Plant Physiol. 1981 Jul;68(1):82–87. doi: 10.1104/pp.68.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brenner R. R. Effect of unsaturated acids on membrane structure and enzyme kinetics. Prog Lipid Res. 1984;23(2):69–96. doi: 10.1016/0163-7827(84)90008-0. [DOI] [PubMed] [Google Scholar]
  6. Carman G. M., Henry S. A. Phospholipid biosynthesis in yeast. Annu Rev Biochem. 1989;58:635–669. doi: 10.1146/annurev.bi.58.070189.003223. [DOI] [PubMed] [Google Scholar]
  7. Chapman K. D., Trelease R. N. Inhibition of Cottonseed Choline- and Ethanolaminephosphotransferases by Calcium during Postgerminative Growth. Plant Physiol. 1990 Aug;93(4):1525–1529. doi: 10.1104/pp.93.4.1525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chapman K. D., Trelease R. N. Intracellular localization of phosphatidylcholine and phosphatidylethanolamine synthesis in cotyledons of cotton seedlings. Plant Physiol. 1991 Jan;95(1):69–76. doi: 10.1104/pp.95.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chapman K. D., Turley R. B., Trelease R. N. Relationship between Cottonseed Malate Synthase Aggregation Behavior and Suborganellar Location in Glyoxysomes and Endoplasmic Reticulum. Plant Physiol. 1989 Jan;89(1):352–359. doi: 10.1104/pp.89.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cheesbrough T. M., Moore T. S. Transverse Distribution of Phospholipids in Organelle Membranes from Ricinus communis L. var. Hale Endosperm: MITOCHONDRIA AND GLYOXYSOMES. Plant Physiol. 1980 Jun;65(6):1076–1080. doi: 10.1104/pp.65.6.1076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Comai L., Dietrich R. A., Maslyar D. J., Baden C. S., Harada J. J. Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Plant Cell. 1989 Mar;1(3):293–300. doi: 10.1105/tpc.1.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crane D. I., Zamattia J., Masters C. J. Alterations in the integrity of peroxisomal membranes in livers of mice treated with peroxisome proliferators. Mol Cell Biochem. 1990 Aug 10;96(2):153–161. doi: 10.1007/BF00420907. [DOI] [PubMed] [Google Scholar]
  13. Dawidowicz E. A. Dynamics of membrane lipid metabolism and turnover. Annu Rev Biochem. 1987;56:43–61. doi: 10.1146/annurev.bi.56.070187.000355. [DOI] [PubMed] [Google Scholar]
  14. Donaldson R. P., Beevers H. Lipid composition of organelles from germinating castor bean endosperm. Plant Physiol. 1977 Feb;59(2):259–263. doi: 10.1104/pp.59.2.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ettinger W. F., Harada J. J. Translational or post-translational processes affect differentially the accumulation of isocitrate lyase and malate synthase proteins and enzyme activities in embryos and seedlings of Brassica napus. Arch Biochem Biophys. 1990 Aug 15;281(1):139–143. doi: 10.1016/0003-9861(90)90423-v. [DOI] [PubMed] [Google Scholar]
  16. Fujiki Y., Fowler S., Shio H., Hubbard A. L., Lazarow P. B. Polypeptide and phospholipid composition of the membrane of rat liver peroxisomes: comparison with endoplasmic reticulum and mitochondrial membranes. J Cell Biol. 1982 Apr;93(1):103–110. doi: 10.1083/jcb.93.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. González E. Glycoproteins in the matrix of glyoxysomes in endosperm of castor bean seedlings. Plant Physiol. 1986 Apr;80(4):950–955. doi: 10.1104/pp.80.4.950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hashimoto T. Purification, properties and biosynthesis of peroxisomal beta-oxidation enzymes. Prog Clin Biol Res. 1990;321:137–152. [PubMed] [Google Scholar]
  19. Hazel J. R. Determination of the phospholipid composition of trout gill by Iatroscan TLC/FID: effect of thermal acclimation. Lipids. 1985 Aug;20(8):516–520. doi: 10.1007/BF02534892. [DOI] [PubMed] [Google Scholar]
  20. Kader J. C. Intracellular transfer of phospholipids, galactolipids, and fatty acids in plant cells. Subcell Biochem. 1990;16:69–111. doi: 10.1007/978-1-4899-1621-1_4. [DOI] [PubMed] [Google Scholar]
  21. Kagawa T., Lord J. M., Beevers H. The origin and turnover of organelle membranes in castor bean endosperm. Plant Physiol. 1973 Jan;51(1):61–65. doi: 10.1104/pp.51.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lazarow P. B., Fujiki Y. Biogenesis of peroxisomes. Annu Rev Cell Biol. 1985;1:489–530. doi: 10.1146/annurev.cb.01.110185.002421. [DOI] [PubMed] [Google Scholar]
  23. Lord J. M., Roberts L. M. Formation of glyoxysomes. Int Rev Cytol Suppl. 1983;15:115–156. doi: 10.1016/b978-0-12-364376-6.50011-9. [DOI] [PubMed] [Google Scholar]
  24. Moreau P., Rodriguez M., Cassagne C., Morré D. M., Morré D. J. Trafficking of lipids from the endoplasmic reticulum to the Golgi apparatus in a cell-free system from rat liver. J Biol Chem. 1991 Mar 5;266(7):4322–4328. [PubMed] [Google Scholar]
  25. Moreau R. A., Liu K. D., Huang A. H. Spherosomes of Castor Bean Endosperm: MEMBRANE COMPONENTS, FORMATION, AND DEGRADATION. Plant Physiol. 1980 Jun;65(6):1176–1180. doi: 10.1104/pp.65.6.1176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mountford C. E., Wright L. C. Organization of lipids in the plasma membranes of malignant and stimulated cells: a new model. Trends Biochem Sci. 1988 May;13(5):172–177. doi: 10.1016/0968-0004(88)90145-4. [DOI] [PubMed] [Google Scholar]
  27. Ni W., Trelease R. N., Eising R. Two temporally synthesized charge subunits interact to form the five isoforms of cottonseed (Gossypium hirsutum) catalase. Biochem J. 1990 Jul 1;269(1):233–238. doi: 10.1042/bj2690233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ni W., Trelease R. N. Post-Transcriptional Regulation of Catalase Isozyme Expression in Cotton Seeds. Plant Cell. 1991 Jul;3(7):737–744. doi: 10.1105/tpc.3.7.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nishimura M., Yamaguchi J., Mori H., Akazawa T., Yokota S. Immunocytochemical Analysis Shows that Glyoxysomes Are Directly Transformed to Leaf Peroxisomes during Greening of Pumpkin Cotyledons. Plant Physiol. 1986 May;81(1):313–316. doi: 10.1104/pp.81.1.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Nuttley W. M., Bodnar A. G., Mangroo D., Rachubinski R. A. Isolation and characterization of membranes from oleic acid-induced peroxisomes of Candida tropicalis. J Cell Sci. 1990 Mar;95(Pt 3):463–470. doi: 10.1242/jcs.95.3.463. [DOI] [PubMed] [Google Scholar]
  31. Qu R., Wang S. M., Lin Y. H., Vance V. B., Huang A. H. Characteristics and biosynthesis of membrane proteins of lipid bodies in the scutella of maize (Zea mays L.). Biochem J. 1986 Apr 1;235(1):57–65. doi: 10.1042/bj2350057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Smith S. M., Leaver C. J. Glyoxysomal Malate Synthase of Cucumber: Molecular Cloning of a cDNA and Regulation of Enzyme Synthesis during Germination. Plant Physiol. 1986 Jul;81(3):762–767. doi: 10.1104/pp.81.3.762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Titus D. E., Becker W. M. Investigation of the glyoxysome-peroxisome transition in germinating cucumber cotyledons using double-label immunoelectron microscopy. J Cell Biol. 1985 Oct;101(4):1288–1299. doi: 10.1083/jcb.101.4.1288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tolbert N. E., Oeser A., Kisaki T., Hageman R. H., Yamazaki R. K. Peroxisomes from spinach leaves containing enzymes related to glycolate metabolism. J Biol Chem. 1968 Oct 10;243(19):5179–5184. [PubMed] [Google Scholar]
  35. Trelease R. N., Hermerath C. A., Turley R. B., Kunce C. M. Cottonseed malate synthase : purification and immunochemical characterization. Plant Physiol. 1987 Aug;84(4):1343–1349. doi: 10.1104/pp.84.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Turley R. B., Trelease R. N. Development and regulation of three glyoxysomal enzymes during cotton seed maturation and growth. Plant Mol Biol. 1990 Feb;14(2):137–146. doi: 10.1007/BF00018555. [DOI] [PubMed] [Google Scholar]
  37. Van Veldhoven P. P., Just W. W., Mannaerts G. P. Permeability of the peroxisomal membrane to cofactors of beta-oxidation. Evidence for the presence of a pore-forming protein. J Biol Chem. 1987 Mar 25;262(9):4310–4318. [PubMed] [Google Scholar]
  38. Veenhuis M., Goodman J. M. Peroxisomal assembly: membrane proliferation precedes the induction of the abundant matrix proteins in the methylotrophic yeast Candida boidinii. J Cell Sci. 1990 Aug;96(Pt 4):583–590. doi: 10.1242/jcs.96.4.583. [DOI] [PubMed] [Google Scholar]
  39. Weir E. M., Riezman H., Grienenberger J. M., Becker W. M., Leaver C. J. Regulation of glyoxysomal enzymes during germination of cucumber. Temporal changes in translatable mRNAs for isocitrate lyase and malate synthase. Eur J Biochem. 1980 Dec;112(3):469–477. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES