Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1991 Nov 2;115(4):1009–1019. doi: 10.1083/jcb.115.4.1009

Subcellular localization of Forssman glycolipid in epithelial MDCK cells by immuno-electronmicroscopy after freeze-substitution

PMCID: PMC2289941  PMID: 1955453

Abstract

Forssman antigen, a neutral glycosphingolipid carrying five monosaccharides, was localized in epithelial MDCK cells by the immunogold technique. Labeling with a well defined mAb and protein A- gold after freeze-substitution and low temperature embedding in Lowicryl HM20 of aldehyde-fixed and cryoprotected cells, resulted in high levels of specific labeling and excellent retention of cellular ultrastructure compared to ultra-thin cryosections. No Forssman glycolipid was lost from the cells during freeze-substitution as measured by radio-immunostaining of lipid extracts. Redistribution of the glycolipid between membranes did not occur. Forssman glycolipid, abundantly expressed on the surface of MDCK II cells, did not move to neighboring cell surfaces in cocultures with Forssman negative MDCK I cells, even though they were connected by tight junctions. The labeling density on the apical plasma membrane was 1.4-1.6 times higher than basolateral. Roughly two-thirds of the gold particles were found intracellularly. The Golgi complex was labeled for Forssman as were endosomes, identified by endocytosed albumin-gold, and lysosomes, defined by double labeling for cathepsin D. In most cases, the nuclear envelope was Forssman positive, but the labeling density was 10-fold less than on the plasma membrane. Mitochondria and peroxisomes, the latter identified by catalase, remained free of label, consistent with the notion that they do not receive transport vesicles carrying glycosphingolipids. The present method of lipid immunolabeling holds great potential for the localization of other antigenic lipids.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barbosa M. L., Pinto da Silva P. Restriction of glycolipids to the outer half of a plasma membrane: concanavalin A labeling of membrane halves in Acanthamoeba castellanii. Cell. 1983 Jul;33(3):959–966. doi: 10.1016/0092-8674(83)90039-9. [DOI] [PubMed] [Google Scholar]
  2. Boddingius J., Dijkman H. P. Immunogold labeling method for Mycobacterium leprae-specific phenolic glycolipid in glutaraldehyde-osmium-fixed and Araldite-embedded leprosy lesions. J Histochem Cytochem. 1989 Apr;37(4):455–462. doi: 10.1177/37.4.2926124. [DOI] [PubMed] [Google Scholar]
  3. Curatolo W. Glycolipid function. Biochim Biophys Acta. 1987 Jun 24;906(2):137–160. doi: 10.1016/0304-4157(87)90009-8. [DOI] [PubMed] [Google Scholar]
  4. Curatolo W. The physical properties of glycolipids. Biochim Biophys Acta. 1987 Jun 24;906(2):111–136. doi: 10.1016/0304-4157(87)90008-6. [DOI] [PubMed] [Google Scholar]
  5. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature. 1985 Mar 7;314(6006):53–57. doi: 10.1038/314053a0. [DOI] [PubMed] [Google Scholar]
  6. Forstner G. G., Tanaka K., Isselbacher K. J. Lipid composition of the isolated rat intestinal microvillus membrane. Biochem J. 1968 Aug;109(1):51–59. doi: 10.1042/bj1090051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gahmberg C. G., Hakomori S. Surface carbohydrates of hamster fibroblasts. I. Chemical characterization of surface-labeled glycosphingolipids and aspecific ceramide tetrasaccharide for transformants. J Biol Chem. 1975 Apr 10;250(7):2438–2446. [PubMed] [Google Scholar]
  8. Geuze H. J., Slot J. W., Schwartz A. L. Membranes of sorting organelles display lateral heterogeneity in receptor distribution. J Cell Biol. 1987 Jun;104(6):1715–1723. doi: 10.1083/jcb.104.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gieselmann V., Pohlmann R., Hasilik A., Von Figura K. Biosynthesis and transport of cathepsin D in cultured human fibroblasts. J Cell Biol. 1983 Jul;97(1):1–5. doi: 10.1083/jcb.97.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hakomori S. Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem. 1990 Nov 5;265(31):18713–18716. [PubMed] [Google Scholar]
  11. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  12. Hovius R., Lambrechts H., Nicolay K., de Kruijff B. Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta. 1990 Jan 29;1021(2):217–226. doi: 10.1016/0005-2736(90)90036-n. [DOI] [PubMed] [Google Scholar]
  13. Ikeda H. An ultrastructural analysis of the inclusion body in the type II pneumocyte processed by rapid freezing followed by freeze-substitution--an autoradiographic study. J Electron Microsc (Tokyo) 1985;34(4):398–410. [PubMed] [Google Scholar]
  14. Kachar B., Reese T. S. Evidence for the lipidic nature of tight junction strands. Nature. 1982 Apr 1;296(5856):464–466. doi: 10.1038/296464a0. [DOI] [PubMed] [Google Scholar]
  15. Kanai Y., Kawakami H., Takata K., Kurohmaru M., Hayashi Y., Nishida T., Hirano H. Localization of Forssman glycolipid and GM1 ganglioside intracellularly and on the surface of germ cells during fetal testicular and ovarian development of mice. Histochemistry. 1990;94(6):561–568. doi: 10.1007/BF00271982. [DOI] [PubMed] [Google Scholar]
  16. Kartenbeck J., Stukenbrok H., Helenius A. Endocytosis of simian virus 40 into the endoplasmic reticulum. J Cell Biol. 1989 Dec;109(6 Pt 1):2721–2729. doi: 10.1083/jcb.109.6.2721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kawai K., Fujita M., Nakao M. Lipid components of two different regions of an intestinal epithelial cell membrane of mouse. Biochim Biophys Acta. 1974 Nov 18;369(2):222–233. [PubMed] [Google Scholar]
  18. LEDUC E. H., TANAKA N. A study of the cellular distribution of Forssman antigen in various species. J Immunol. 1956 Sep;77(3):198–212. [PubMed] [Google Scholar]
  19. Magnani J. L., Spitalnik S. L., Ginsburg V. Antibodies against cell surface carbohydrates: determination of antigen structure. Methods Enzymol. 1987;138:195–207. doi: 10.1016/0076-6879(87)38016-4. [DOI] [PubMed] [Google Scholar]
  20. Matyas G. R., Morré D. J. Subcellular distribution and biosynthesis of rat liver gangliosides. Biochim Biophys Acta. 1987 Oct 17;921(3):599–614. doi: 10.1016/0005-2760(87)90089-0. [DOI] [PubMed] [Google Scholar]
  21. Nichols G. E., Borgman C. A., Young W. W., Jr On tight junction structure: Forssman glycolipid does not flow between MDCK cells in an intact epithelial monolayer. Biochem Biophys Res Commun. 1986 Aug 14;138(3):1163–1169. doi: 10.1016/s0006-291x(86)80404-1. [DOI] [PubMed] [Google Scholar]
  22. Nichols G. E., Lovejoy J. C., Borgman C. A., Sanders J. M., Young W. W., Jr Isolation and characterization of two types of MDCK epithelial cell clones based on glycosphingolipid pattern. Biochim Biophys Acta. 1986 Jun 16;887(1):1–12. doi: 10.1016/0167-4889(86)90115-1. [DOI] [PubMed] [Google Scholar]
  23. Nichols G. E., Shiraishi T., Allietta M., Tillack T. W., Young W. W., Jr Polarity of the Forssman glycolipid in MDCK epithelial cells. Biochim Biophys Acta. 1987 Sep 14;930(2):154–166. doi: 10.1016/0167-4889(87)90027-9. [DOI] [PubMed] [Google Scholar]
  24. Nichols G. E., Shiraishi T., Young W. W., Jr Polarity of neutral glycolipids, gangliosides, and sulfated lipids in MDCK epithelial cells. J Lipid Res. 1988 Sep;29(9):1205–1213. [PubMed] [Google Scholar]
  25. Nimura Y., Isihizuka I. Glycosphingolipid composition of a renal cell line (MDCK) and its ouabain-resistant mutant. J Biochem. 1986 Oct;100(4):825–835. doi: 10.1093/oxfordjournals.jbchem.a121794. [DOI] [PubMed] [Google Scholar]
  26. Pagano R. E. Lipid traffic in eukaryotic cells: mechanisms for intracellular transport and organelle-specific enrichment of lipids. Curr Opin Cell Biol. 1990 Aug;2(4):652–663. doi: 10.1016/0955-0674(90)90107-p. [DOI] [PubMed] [Google Scholar]
  27. Pascher I. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta. 1976 Dec 2;455(2):433–451. doi: 10.1016/0005-2736(76)90316-3. [DOI] [PubMed] [Google Scholar]
  28. Paulson J. C., Colley K. J. Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. J Biol Chem. 1989 Oct 25;264(30):17615–17618. [PubMed] [Google Scholar]
  29. Pinto da Silva P., Kachar B. On tight-junction structure. Cell. 1982 Mar;28(3):441–450. doi: 10.1016/0092-8674(82)90198-2. [DOI] [PubMed] [Google Scholar]
  30. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. ROSE H. G., OKLANDER M. IMPROVED PROCEDURE FOR THE EXTRACTION OF LIPIDS FROM HUMAN ERYTHROCYTES. J Lipid Res. 1965 Jul;6:428–431. [PubMed] [Google Scholar]
  32. Rock P., Allietta M., Young W. W., Jr, Thompson T. E., Tillack T. W. Organization of glycosphingolipids in phosphatidylcholine bilayers: use of antibody molecules and Fab fragments as morphologic markers. Biochemistry. 1990 Sep 11;29(36):8484–8490. doi: 10.1021/bi00488a040. [DOI] [PubMed] [Google Scholar]
  33. Seybold V., Rösner H., Greis C., Beck E., Rahmann H. Possible involvement of polysialogangliosides in nerve sprouting and cell contact formation: an ultracytochemical in vitro study. J Neurochem. 1989 Jun;52(6):1958–1961. doi: 10.1111/j.1471-4159.1989.tb07286.x. [DOI] [PubMed] [Google Scholar]
  34. Siddiqui B., Hakomori S. A revised structure for the Forssman glycolipid hapten. J Biol Chem. 1971 Sep 25;246(18):5766–5769. [PubMed] [Google Scholar]
  35. Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
  36. Slomiany B. L., Banas-Gruszka Z., Zdebska E., Slomiany A. Characterization of the Forssman-active oligosaccharides from dog gastric mucus glycoprotein isolated with the use of a monoclonal antibody. J Biol Chem. 1982 Aug 25;257(16):9561–9565. [PubMed] [Google Scholar]
  37. Slomiany B. L., Slomiany A. Forssman glycolipid variants of dog gastric mucosa. Structure of a branched ceramide octasaccharide. Eur J Biochem. 1978 Feb 1;83(1):105–111. doi: 10.1111/j.1432-1033.1978.tb12073.x. [DOI] [PubMed] [Google Scholar]
  38. Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  39. Sonnenberg A., van Balen P., Hengeveld T., Kolvenbag G. J., Van Hoeven R. P., Hilgers J. Monoclonal antibodies detecting different epitopes on the Forssman glycolipid hapten. J Immunol. 1986 Aug 15;137(4):1264–1269. [PubMed] [Google Scholar]
  40. Stern P. L., Bretscher M. S. Capping of exogenous Forssman glycolipid on cells. J Cell Biol. 1979 Sep;82(3):829–833. doi: 10.1083/jcb.82.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Symington F. W., Murray W. A., Bearman S. I., Hakomori S. Intracellular localization of lactosylceramide, the major human neutrophil glycosphingolipid. J Biol Chem. 1987 Aug 15;262(23):11356–11363. [PubMed] [Google Scholar]
  42. Thompson T. E., Tillack T. W. Organization of glycosphingolipids in bilayers and plasma membranes of mammalian cells. Annu Rev Biophys Biophys Chem. 1985;14:361–386. doi: 10.1146/annurev.bb.14.060185.002045. [DOI] [PubMed] [Google Scholar]
  43. Tillack T. W., Allietta M., Moran R. E., Young W. W., Jr Localization of globoside and Forssman glycolipids on erythrocyte membranes. Biochim Biophys Acta. 1983 Aug 24;733(1):15–24. doi: 10.1016/0005-2736(83)90086-x. [DOI] [PubMed] [Google Scholar]
  44. Tokuyasu K. T. Immunochemistry on ultrathin frozen sections. Histochem J. 1980 Jul;12(4):381–403. doi: 10.1007/BF01011956. [DOI] [PubMed] [Google Scholar]
  45. Weibull C., Christiansson A. Extraction of proteins and membrane lipids during low temperature embedding of biological material for electron microscopy. J Microsc. 1986 Apr;142(Pt 1):79–86. doi: 10.1111/j.1365-2818.1986.tb02739.x. [DOI] [PubMed] [Google Scholar]
  46. van Meer G., Gumbiner B., Simons K. The tight junction does not allow lipid molecules to diffuse from one epithelial cell to the next. Nature. 1986 Aug 14;322(6080):639–641. doi: 10.1038/322639a0. [DOI] [PubMed] [Google Scholar]
  47. van Meer G. Lipid traffic in animal cells. Annu Rev Cell Biol. 1989;5:247–275. doi: 10.1146/annurev.cb.05.110189.001335. [DOI] [PubMed] [Google Scholar]
  48. van Meer G., Stelzer E. H., Wijnaendts-van-Resandt R. W., Simons K. Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells. J Cell Biol. 1987 Oct;105(4):1623–1635. doi: 10.1083/jcb.105.4.1623. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES