Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1992 Jul 2;118(2):397–410. doi: 10.1083/jcb.118.2.397

Schwann cells of the myelin-forming phenotype express neurofilament protein NF-M

PMCID: PMC2290038  PMID: 1321159

Abstract

Immature Schwann cells of the rat sciatic nerve can differentiate into myelin-forming or non-myelin-forming cells. The factors that influence this divergent development are unknown but certain markers such as galactocerebroside distinguish the two cell populations at an early stage of Schwann cell differentiation. Because myelination requires extensive changes in cell morphology, we have investigated the composition and structure of the Schwann cell cytoskeleton at a time when these cells become committed to myelination. Here we show that Schwann cells express a cytoskeletal protein of M(r) 145 before diverging into the myelin-forming path, i.e., before they acquire cell- surface galactocerobroside. The p145 protein has the characteristics of an intermediate filament (IF) protein and immunoelectron microscopy shows that it colocalizes with vimentin, which suggests that these two proteins can coassemble into IFs. Elevated intracellular cAMP levels, which can mimic some of the early effects of axons on Schwann cell differentiation, induced p145 synthesis, therefore, we conclude that myelin-forming Schwann cells express this protein at a very early stage in their development. Immunological comparisons with other IF proteins revealed a close similarity between p145 and the neurofilament protein NF-M; the identification of p145 as NF-M was confirmed by isolating and sequencing a full-length clone from a Schwann cell cDNA library. These data demonstrate that Schwann cells remodel their IFs by expressing NF- M before acquiring the myelin-forming phenotype and that IF proteins of the neurofilament-type are not restricted to neurons in the vertebrate nervous system.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Autilio-Gambetti L., Sipple J., Sudilovsky O., Gambetti P. Intermediate filaments of Schwann cells. J Neurochem. 1982 Mar;38(3):774–780. doi: 10.1111/j.1471-4159.1982.tb08698.x. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bansal R., Warrington A. E., Gard A. L., Ranscht B., Pfeiffer S. E. Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res. 1989 Dec;24(4):548–557. doi: 10.1002/jnr.490240413. [DOI] [PubMed] [Google Scholar]
  4. Brockes J. P., Fields K. L., Raff M. C. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 1979 Apr 6;165(1):105–118. doi: 10.1016/0006-8993(79)90048-9. [DOI] [PubMed] [Google Scholar]
  5. Brunden K. R., Windebank A. J., Poduslo J. F. Role of axons in the regulation of P0 biosynthesis by Schwann cells. J Neurosci Res. 1990 Jun;26(2):135–143. doi: 10.1002/jnr.490260202. [DOI] [PubMed] [Google Scholar]
  6. Bunge R. P., Bunge M. B., Eldridge C. F. Linkage between axonal ensheathment and basal lamina production by Schwann cells. Annu Rev Neurosci. 1986;9:305–328. doi: 10.1146/annurev.ne.09.030186.001513. [DOI] [PubMed] [Google Scholar]
  7. Chin S. S., Liem R. K. Expression of rat neurofilament proteins NF-L and NF-M in transfected non-neuronal cells. Eur J Cell Biol. 1989 Dec;50(2):475–490. [PubMed] [Google Scholar]
  8. Chin S. S., Liem R. K. Transfected rat high-molecular-weight neurofilament (NF-H) coassembles with vimentin in a predominantly nonphosphorylated form. J Neurosci. 1990 Nov;10(11):3714–3726. doi: 10.1523/JNEUROSCI.10-11-03714.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chin S. S., Macioce P., Liem R. K. Effects of truncated neurofilament proteins on the endogenous intermediate filaments in transfected fibroblasts. J Cell Sci. 1991 Jun;99(Pt 2):335–350. doi: 10.1242/jcs.99.2.335. [DOI] [PubMed] [Google Scholar]
  10. Cossette L. J., Vincent M. Expression of a developmentally regulated cross-linking intermediate filament-associated protein (IFAPa-400) during the replacement of vimentin for desmin in muscle cell differentiation. J Cell Sci. 1991 Feb;98(Pt 2):251–260. doi: 10.1242/jcs.98.2.251. [DOI] [PubMed] [Google Scholar]
  11. DeVries G. H., Salzer J. L., Bunge R. P. Axolemma-enriched fractions isolated from PNS and CNS are mitogenic for cultured Schwann cells. Brain Res. 1982 Feb;255(2):295–299. doi: 10.1016/0165-3806(82)90028-1. [DOI] [PubMed] [Google Scholar]
  12. Eccleston P. A., Mirsky R., Jessen K. R., Sommer I., Schachner M. Postnatal development of rat peripheral nerves: an immunohistochemical study of membrane lipids common to non-myelin forming Schwann cells, myelin forming Schwann cells and oligodendrocytes. Brain Res. 1987 Oct;432(2):249–256. doi: 10.1016/0165-3806(87)90049-6. [DOI] [PubMed] [Google Scholar]
  13. Escurat M., Djabali K., Huc C., Landon F., Bécourt C., Boitard C., Gros F., Portier M. M. Origin of the beta cells of the islets of Langerhans is further questioned by the expression of neuronal intermediate filament proteins, peripherin and NF-L, in the rat insulinoma RIN5F cell line. Dev Neurosci. 1991;13(6):424–432. doi: 10.1159/000112194. [DOI] [PubMed] [Google Scholar]
  14. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  15. Fliegner K. H., Ching G. Y., Liem R. K. The predicted amino acid sequence of alpha-internexin is that of a novel neuronal intermediate filament protein. EMBO J. 1990 Mar;9(3):749–755. doi: 10.1002/j.1460-2075.1990.tb08169.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Geiger B. Intermediate filaments. Looking for a function. Nature. 1987 Oct 1;329(6138):392–393. doi: 10.1038/329392a0. [DOI] [PubMed] [Google Scholar]
  17. Georgatos S. D., Weber K., Geisler N., Blobel G. Binding of two desmin derivatives to the plasma membrane and the nuclear envelope of avian erythrocytes: evidence for a conserved site-specificity in intermediate filament-membrane interactions. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6780–6784. doi: 10.1073/pnas.84.19.6780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Goldman R., Goldman A., Green K., Jones J., Lieska N., Yang H. Y. Intermediate filaments: possible functions as cytoskeletal connecting links between the nucleus and the cell surface. Ann N Y Acad Sci. 1985;455:1–17. doi: 10.1111/j.1749-6632.1985.tb50400.x. [DOI] [PubMed] [Google Scholar]
  19. Gubler U., Hoffman B. J. A simple and very efficient method for generating cDNA libraries. Gene. 1983 Nov;25(2-3):263–269. doi: 10.1016/0378-1119(83)90230-5. [DOI] [PubMed] [Google Scholar]
  20. Hahn A. F., Whitaker J. N., Kachar B., Webster H. D. P2, P1, and P0 myelin protein expression in developing rat sixth nerve: a quantitative immunocytochemical study. J Comp Neurol. 1987 Jun 22;260(4):501–512. doi: 10.1002/cne.902600404. [DOI] [PubMed] [Google Scholar]
  21. Hansen S. H., Stagaard M., Møllgård K. Neurofilament-like pattern of reactivity in human foetal PNS and spinal cord following immunostaining with polyclonal anti-glial fibrillary acidic protein antibodies. J Neurocytol. 1989 Aug;18(4):427–436. doi: 10.1007/BF01474540. [DOI] [PubMed] [Google Scholar]
  22. Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
  23. Hoffman P. N., Griffin J. W., Price D. L. Control of axonal caliber by neurofilament transport. J Cell Biol. 1984 Aug;99(2):705–714. doi: 10.1083/jcb.99.2.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hunkapiller M. W., Lujan E., Ostrander F., Hood L. E. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 1983;91:227–236. doi: 10.1016/s0076-6879(83)91019-4. [DOI] [PubMed] [Google Scholar]
  25. Jessen K. R., Mirsky R. Glial fibrillary acidic polypeptides in peripheral glia. Molecular weight, heterogeneity and distribution. J Neuroimmunol. 1985 Jun;8(4-6):377–393. doi: 10.1016/s0165-5728(85)80074-6. [DOI] [PubMed] [Google Scholar]
  26. Jessen K. R., Mirsky R., Morgan L. Axonal signals regulate the differentiation of non-myelin-forming Schwann cells: an immunohistochemical study of galactocerebroside in transected and regenerating nerves. J Neurosci. 1987 Oct;7(10):3362–3369. doi: 10.1523/JNEUROSCI.07-10-03362.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jessen K. R., Mirsky R. Schwann cell precursors and their development. Glia. 1991;4(2):185–194. doi: 10.1002/glia.440040210. [DOI] [PubMed] [Google Scholar]
  28. Jessen K. R., Morgan L., Stewart H. J., Mirsky R. Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development. 1990 May;109(1):91–103. doi: 10.1242/dev.109.1.91. [DOI] [PubMed] [Google Scholar]
  29. Kroczek R. A., Siebert E. Optimization of northern analysis by vacuum-blotting, RNA-transfer visualization, and ultraviolet fixation. Anal Biochem. 1990 Jan;184(1):90–95. doi: 10.1016/0003-2697(90)90017-4. [DOI] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
  32. Lemke G., Chao M. Axons regulate Schwann cell expression of the major myelin and NGF receptor genes. Development. 1988 Mar;102(3):499–504. doi: 10.1242/dev.102.3.499. [DOI] [PubMed] [Google Scholar]
  33. Lendahl U., Zimmerman L. B., McKay R. D. CNS stem cells express a new class of intermediate filament protein. Cell. 1990 Feb 23;60(4):585–595. doi: 10.1016/0092-8674(90)90662-x. [DOI] [PubMed] [Google Scholar]
  34. Lockett T. J. A bacteriophage lambda DNA purification procedure suitable for the analysis of DNA from either large or multiple small lysates. Anal Biochem. 1990 Mar;185(2):230–234. doi: 10.1016/0003-2697(90)90284-g. [DOI] [PubMed] [Google Scholar]
  35. Mirsky R., Dubois C., Morgan L., Jessen K. R. 04 and A007-sulfatide antibodies bind to embryonic Schwann cells prior to the appearance of galactocerebroside; regulation of the antigen by axon-Schwann cell signals and cyclic AMP. Development. 1990 May;109(1):105–116. doi: 10.1242/dev.109.1.105. [DOI] [PubMed] [Google Scholar]
  36. Mirsky R., Winter J., Abney E. R., Pruss R. M., Gavrilovic J., Raff M. C. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J Cell Biol. 1980 Mar;84(3):483–494. doi: 10.1083/jcb.84.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Monteiro M. J., Cleveland D. W. Expression of NF-L and NF-M in fibroblasts reveals coassembly of neurofilament and vimentin subunits. J Cell Biol. 1989 Feb;108(2):579–593. doi: 10.1083/jcb.108.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Monteiro M. J., Hoffman P. N., Gearhart J. D., Cleveland D. W. Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density in axons without affecting caliber. J Cell Biol. 1990 Oct;111(4):1543–1557. doi: 10.1083/jcb.111.4.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Morgan L., Jessen K. R., Mirsky R. The effects of cAMP on differentiation of cultured Schwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+, GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol. 1991 Feb;112(3):457–467. doi: 10.1083/jcb.112.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Napolitano E. W., Chin S. S., Colman D. R., Liem R. K. Complete amino acid sequence and in vitro expression of rat NF-M, the middle molecular weight neurofilament protein. J Neurosci. 1987 Aug;7(8):2590–2599. [PMC free article] [PubMed] [Google Scholar]
  41. Noble M., Barnett S. C., Bögler O., Land H., Wolswijk G., Wren D. Control of division and differentiation in oligodendrocyte-type-2 astrocyte progenitor cells. Ciba Found Symp. 1990;150:227–249. doi: 10.1002/9780470513927.ch14. [DOI] [PubMed] [Google Scholar]
  42. Porter S., Clark M. B., Glaser L., Bunge R. P. Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability. J Neurosci. 1986 Oct;6(10):3070–3078. doi: 10.1523/JNEUROSCI.06-10-03070.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Salzer J. L., Bunge R. P. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol. 1980 Mar;84(3):739–752. doi: 10.1083/jcb.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Sobue G., Pleasure D. Adhesion of axolemmal fragments to Schwann cells: a signal- and target-specific process closely linked to axolemmal induction of Schwann cell mitosis. J Neurosci. 1985 Feb;5(2):379–387. doi: 10.1523/JNEUROSCI.05-02-00379.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sobue G., Shuman S., Pleasure D. Schwann cell responses to cyclic AMP: proliferation, change in shape, and appearance of surface galactocerebroside. Brain Res. 1986 Jan 1;362(1):23–32. doi: 10.1016/0006-8993(86)91394-6. [DOI] [PubMed] [Google Scholar]
  47. Sommer I., Schachner M. Monoclonal antibodies (O1 to O4) to oligodendrocyte cell surfaces: an immunocytological study in the central nervous system. Dev Biol. 1981 Apr 30;83(2):311–327. doi: 10.1016/0012-1606(81)90477-2. [DOI] [PubMed] [Google Scholar]
  48. Steinert P. M., Liem R. K. Intermediate filament dynamics. Cell. 1990 Feb 23;60(4):521–523. doi: 10.1016/0092-8674(90)90651-t. [DOI] [PubMed] [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Weber K., Shaw G., Osborn M., Debus E., Geisler N. Neurofilaments, a subclass of intermediate filaments: structure and expression. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):717–729. doi: 10.1101/sqb.1983.048.01.075. [DOI] [PubMed] [Google Scholar]
  51. Weinstein D. E., Shelanski M. L., Liem R. K. Suppression by antisense mRNA demonstrates a requirement for the glial fibrillary acidic protein in the formation of stable astrocytic processes in response to neurons. J Cell Biol. 1991 Mar;112(6):1205–1213. doi: 10.1083/jcb.112.6.1205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Wilson R., Brophy P. J. Role for the oligodendrocyte cytoskeleton in myelination. J Neurosci Res. 1989 Apr;22(4):439–448. doi: 10.1002/jnr.490220409. [DOI] [PubMed] [Google Scholar]
  53. Yan Q., Johnson E. M., Jr An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci. 1988 Sep;8(9):3481–3498. doi: 10.1523/JNEUROSCI.08-09-03481.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Yang H. Y., Lieska N., Goldman A. E., Goldman R. D. A 300,000-mol-wt intermediate filament-associated protein in baby hamster kidney (BHK-21) cells. J Cell Biol. 1985 Feb;100(2):620–631. doi: 10.1083/jcb.100.2.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Young R. A., Davis R. W. Efficient isolation of genes by using antibody probes. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1194–1198. doi: 10.1073/pnas.80.5.1194. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES