Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Jun;34(6):1364–1372. doi: 10.1128/jcm.34.6.1364-1372.1996

Genomic fingerprinting for epidemiological differentiation of Staphylococcus aureus clinical isolates.

M S Smeltzer 1, F L Pratt 1, A F Gillaspy 1, L A Young 1
PMCID: PMC229026  PMID: 8735082

Abstract

We used genomic fingerprinting to investigate an outbreak of methicillin-resistant Staphylococcus aureus in the neonatal intensive care units (NICUs) of two hospitals. The hospitals are located in the same city and are part of the same medical care system. Fingerprinting was done by Southern blot hybridization with DNA probes for the genes encoding the S. aureus collagen adhesin (cna), fibronectin-binding proteins (fnbA and fnbB), and beta-toxin (hlb). Genomic DNA was digested with HaeIII (cna and fnbA-fnbB probes) or HindIII (hlb probe). Hybridization patterns could be distinguished on the basis of (i) the presence or absence of cna, (ii) the size of the restriction fragment containing the cna gene, (iii) restriction fragment length polymorphisms within fnbA and fnbB, (iv) the presence of a lysogenic phage within hlb, and (v) the sizes of the restriction fragments containing the phage-bacterial DNA junction fragments. Over a period of 4 months we examined a total of 46 isolates obtained from various wards within each hospital. Among these 46 isolates, we observed a total of 4 cna patterns, 11 fnbA-fnbB patterns, and 11 hlb patterns. Southern blots with HaeIII-digested genomic DNA and a combination of all three gene probes revealed a total of 16 clearly distinguishable patterns. A total of 22 of the 46 isolates were identical with respect to every genomic marker examined. A total of 21 of these 22 isolates were obtained from patients within an NICU. Nineteen of 21 isolates also exhibited identical antibiotic resistance profiles (antibiogram). Although 5 of the remaining 24 strains exhibited an antibiogram identical to those of the NICU isolates, all 24 strains could be distinguished from the NICU isolates by at least one genomic marker. These results suggest that the NICU isolates had a common origin and that genomic fingerprinting with the cna, fnbA, fnbB, and hlb gene probes can provide an important epidemiological tool for the identification of clinical isolates of S. aureus.

Full Text

The Full Text of this article is available as a PDF (790.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coleman D., Knights J., Russell R., Shanley D., Birkbeck T. H., Dougan G., Charles I. Insertional inactivation of the Staphylococcus aureus beta-toxin by bacteriophage phi 13 occurs by site- and orientation-specific integration of the phi 13 genome. Mol Microbiol. 1991 Apr;5(4):933–939. doi: 10.1111/j.1365-2958.1991.tb00768.x. [DOI] [PubMed] [Google Scholar]
  2. Flock J. I., Fröman G., Jönsson K., Guss B., Signäs C., Nilsson B., Raucci G., Hök M., Wadström T., Lindberg M. Cloning and expression of the gene for a fibronectin-binding protein from Staphylococcus aureus. EMBO J. 1987 Aug;6(8):2351–2357. doi: 10.1002/j.1460-2075.1987.tb02511.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Furue M., So K. S., Ogasa U., Sugiyama H., Ohtake N., Sakurai S., Tamaki K. Outbreak of staphylococcal scalded skin syndrome evaluated by DNA fingerprinting. Lancet. 1995 May 20;345(8960):1308–1308. doi: 10.1016/s0140-6736(95)90957-5. [DOI] [PubMed] [Google Scholar]
  4. Gillaspy A. F., Hickmon S. G., Skinner R. A., Thomas J. R., Nelson C. L., Smeltzer M. S. Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun. 1995 Sep;63(9):3373–3380. doi: 10.1128/iai.63.9.3373-3380.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goh S. H., Byrne S. K., Zhang J. L., Chow A. W. Molecular typing of Staphylococcus aureus on the basis of coagulase gene polymorphisms. J Clin Microbiol. 1992 Jul;30(7):1642–1645. doi: 10.1128/jcm.30.7.1642-1645.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gürtler V., Barrie H. D. Typing of Staphylococcus aureus strains by PCR-amplification of variable-length 16S-23S rDNA spacer regions: characterization of spacer sequences. Microbiology. 1995 May;141(Pt 5):1255–1265. doi: 10.1099/13500872-141-5-1255. [DOI] [PubMed] [Google Scholar]
  7. Hall L. M., Jordens J. Z., Wang F. Methicillin-resistant Staphylococcus aureus from China characterized by digestion of total DNA with restriction enzymes. Epidemiol Infect. 1989 Aug;103(1):183–192. doi: 10.1017/s095026880003048x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ichiyama S., Ohta M., Shimokata K., Kato N., Takeuchi J. Genomic DNA fingerprinting by pulsed-field gel electrophoresis as an epidemiological marker for study of nosocomial infections caused by methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 1991 Dec;29(12):2690–2695. doi: 10.1128/jcm.29.12.2690-2695.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jönsson K., Signäs C., Müller H. P., Lindberg M. Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene. Eur J Biochem. 1991 Dec 18;202(3):1041–1048. doi: 10.1111/j.1432-1033.1991.tb16468.x. [DOI] [PubMed] [Google Scholar]
  10. Mackenzie A., Johnson W., Heyes B., Norrish B., Jamieson F. A prolonged outbreak of exfoliative toxin A-producing Staphylococcus aureus in a newborn nursery. Diagn Microbiol Infect Dis. 1995 Feb;21(2):69–75. doi: 10.1016/0732-8893(95)00024-5. [DOI] [PubMed] [Google Scholar]
  11. McDougal L. K., Thornsberry C. The role of beta-lactamase in staphylococcal resistance to penicillinase-resistant penicillins and cephalosporins. J Clin Microbiol. 1986 May;23(5):832–839. doi: 10.1128/jcm.23.5.832-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mulligan M. E., Murray-Leisure K. A., Ribner B. S., Standiford H. C., John J. F., Korvick J. A., Kauffman C. A., Yu V. L. Methicillin-resistant Staphylococcus aureus: a consensus review of the microbiology, pathogenesis, and epidemiology with implications for prevention and management. Am J Med. 1993 Mar;94(3):313–328. doi: 10.1016/0002-9343(93)90063-u. [DOI] [PubMed] [Google Scholar]
  13. Patti J. M., Allen B. L., McGavin M. J., Hök M. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol. 1994;48:585–617. doi: 10.1146/annurev.mi.48.100194.003101. [DOI] [PubMed] [Google Scholar]
  14. Patti J. M., Jonsson H., Guss B., Switalski L. M., Wiberg K., Lindberg M., Hök M. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J Biol Chem. 1992 Mar 5;267(7):4766–4772. [PubMed] [Google Scholar]
  15. Projan S. J., Kornblum J., Kreiswirth B., Moghazeh S. L., Eisner W., Novick R. P. Nucleotide sequence: the beta-hemolysin gene of Staphylococcus aureus. Nucleic Acids Res. 1989 Apr 25;17(8):3305–3305. doi: 10.1093/nar/17.8.3305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schwarzkopf A., Karch H. Genetic variation in Staphylococcus aureus coagulase genes: potential and limits for use as epidemiological marker. J Clin Microbiol. 1994 Oct;32(10):2407–2412. doi: 10.1128/jcm.32.10.2407-2412.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sheagren J. N. Staphylococcus aureus. The persistent pathogen (first of two parts). N Engl J Med. 1984 May 24;310(21):1368–1373. doi: 10.1056/NEJM198405243102107. [DOI] [PubMed] [Google Scholar]
  18. Smeltzer M. S., Gill S. R., Iandolo J. J. Localization of a chromosomal mutation affecting expression of extracellular lipase in Staphylococcus aureus. J Bacteriol. 1992 Jun;174(12):4000–4006. doi: 10.1128/jb.174.12.4000-4006.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smeltzer M. S., Hart M. E., Iandolo J. J. The effect of lysogeny on the genomic organization of Staphylococcus aureus. Gene. 1994 Jan 28;138(1-2):51–57. doi: 10.1016/0378-1119(94)90782-x. [DOI] [PubMed] [Google Scholar]
  20. Tenover F. C., Arbeit R., Archer G., Biddle J., Byrne S., Goering R., Hancock G., Hébert G. A., Hill B., Hollis R. Comparison of traditional and molecular methods of typing isolates of Staphylococcus aureus. J Clin Microbiol. 1994 Feb;32(2):407–415. doi: 10.1128/jcm.32.2.407-415.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tveten Y., Kristiansen B. E., Ask E., Jenkins A., Hofstad T. DNA fingerprinting of isolates of Staphylococcus aureus from newborns and their contacts. J Clin Microbiol. 1991 Jun;29(6):1100–1105. doi: 10.1128/jcm.29.6.1100-1105.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. van Belkum A., Kluytmans J., van Leeuwen W., Bax R., Quint W., Peters E., Fluit A., Vandenbroucke-Grauls C., van den Brule A., Koeleman H. Multicenter evaluation of arbitrarily primed PCR for typing of Staphylococcus aureus strains. J Clin Microbiol. 1995 Jun;33(6):1537–1547. doi: 10.1128/jcm.33.6.1537-1547.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES