Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Jun;34(6):1412–1419. doi: 10.1128/jcm.34.6.1412-1419.1996

Flow cytometric immunofluorescence assay for detection of antibodies to human immunodeficiency virus type 1 using insoluble precursor forms of recombinant polyproteins as carriers and antigens.

Y W Hu 1, P Birch 1, E Balaskas 1, A Zeibdawi 1, V Scalia 1, S A Thériault-Valin 1, P Gill 1, M T Aye 1
PMCID: PMC229034  PMID: 8735090

Abstract

A new serological assay, the recombinant flow cytometric immunofluorescence assay (r-FIFA), was developed for the early detection of human immunodeficiency virus type 1 (HIV-1) antibodies by using recombinant insoluble forms of HIV-1 Gag-p45, Gag-gp41 chimeric protein, gp160, Po197 polyprotein as antigens and autologous carriers through flow cytometry. These recombinant proteins were expressed in insect cells by a baculovirus expression system. Eight anti-HIV-1 seroconversion panels, a low-titer anti-HIV-1 panel from Boston Biomedica Inc. (BBI), and three HIV-1 seroconversion specimens from the Provincial Health Laboratory of Ontario, Toronto, Ontario, Canada (PHL), were tested and analyzed by r-FIFA. In sensitivity comparisons between r-FIFA and tests licensed by the U.S. Food and Drug Administration, which were used to test all of the HIV-1 panels from BBI, detection of HIV-1 antibody by r-FIFA was on average greater than 20 days earlier than that by enzyme immunoassay. The sensitivity of r-FIFA has permitted the detection of HIV-1-specific immunoglobulin G (IgG), IgM, and IgA antibodies during seroconversion. A kinetic analysis of HIV-1 antibody production of r-FIFA has shown that either IgG or IgM, or both, can be detected, depending on the phase and type of the immune response in the HIV-1-infected individual. Both primary and secondary immune responses were observed during this period. The r-FIFA results suggest that implementation of r-FIFA may significantly reduce the "window" period from the time of infection to the time of seroconversion, with earlier detection of antibodies after initial infection. This would also make it possible for us to understand the immune response and the precise mechanisms of immunopathogenesis in the early period of HIV-1 infection.

Full Text

The Full Text of this article is available as a PDF (874.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benjouad A., Gluckman J. C., Montagnier L., Bahraoui E. Specificity of antibodies produced against native or desialylated human immunodeficiency virus type 1 recombinant gp160. J Virol. 1993 Mar;67(3):1693–1697. doi: 10.1128/jvi.67.3.1693-1697.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Borkowsky W., Krasinski K., Pollack H., Hoover W., Kaul A., Ilmet-Moore T. Early diagnosis of human immunodeficiency virus infection in children less than 6 months of age: comparison of polymerase chain reaction, culture, and plasma antigen capture techniques. J Infect Dis. 1992 Sep;166(3):616–619. doi: 10.1093/infdis/166.3.616. [DOI] [PubMed] [Google Scholar]
  3. Busch M. P. HIV and blood transfusions: focus on seroconversion. Vox Sang. 1994;67 (Suppl 3):13–18. doi: 10.1111/j.1423-0410.1994.tb04538.x. [DOI] [PubMed] [Google Scholar]
  4. Farmer J. L., Hampton R. G., Boots E. Flow cytometric assays for monitoring production of recombinant HIV-1 gp160 in insect cells infected with a baculovirus expression vector. J Virol Methods. 1989 Dec;26(3):279–290. doi: 10.1016/0166-0934(89)90110-9. [DOI] [PubMed] [Google Scholar]
  5. Gallarda J. L., Henrard D. R., Liu D., Harrington S., Stramer S. L., Valinsky J. E., Wu P. Early detection of antibody to human immunodeficiency virus type 1 by using an antigen conjugate immunoassay correlates with the presence of immunoglobulin M antibody. J Clin Microbiol. 1992 Sep;30(9):2379–2384. doi: 10.1128/jcm.30.9.2379-2384.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hu Y. W., Kang C. Y. Enzyme activities in four different forms of human immunodeficiency virus 1 pol gene products. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4596–4600. doi: 10.1073/pnas.88.11.4596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kashala O., Kayembe K., Kanki P., Mukeba P., Diese M., Kalengayi M., Izzia K. W., Essex M. Humoral aspects of anti-HIV immune responses in Zairians with AIDS: lower antigenemia does not correlate with immune complex levels. AIDS Res Hum Retroviruses. 1993 Mar;9(3):251–258. doi: 10.1089/aid.1993.9.251. [DOI] [PubMed] [Google Scholar]
  8. Khalife J., Guy B., Capron M., Kieny M. P., Ameisen J. C., Montagnier L., Lecocq J. P., Capron A. Isotypic restriction of the antibody response to human immunodeficiency virus. AIDS Res Hum Retroviruses. 1988 Feb;4(1):3–9. doi: 10.1089/aid.1988.4.3. [DOI] [PubMed] [Google Scholar]
  9. Kidd I. M., Emery V. C. The use of baculoviruses as expression vectors. Appl Biochem Biotechnol. 1993 Aug-Sep;42(2-3):137–159. doi: 10.1007/BF02788049. [DOI] [PubMed] [Google Scholar]
  10. Luo L., Li Y., Cannon P. M., Kim S., Kang C. Y. Chimeric gag-V3 virus-like particles of human immunodeficiency virus induce virus-neutralizing antibodies. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10527–10531. doi: 10.1073/pnas.89.21.10527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mayo D. J., Rose A. M., Matchett S. E., Hoppe P. A., Solomon J. M., McCurdy K. K. Screening potential blood donors at risk for human immunodeficiency virus. Transfusion. 1991 Jun;31(5):466–474. doi: 10.1046/j.1537-2995.1991.31591263204.x. [DOI] [PubMed] [Google Scholar]
  12. Nair B. C., Ford G., Kalyanaraman V. S., Zafari M., Fang C., Sarngadharan M. G. Enzyme immunoassay using native envelope glycoprotein (gp160) for detection of human immunodeficiency virus type 1 antibodies. J Clin Microbiol. 1994 Jun;32(6):1449–1456. doi: 10.1128/jcm.32.6.1449-1456.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Park J., Morrow C. D. The nonmyristylated Pr160gag-pol polyprotein of human immunodeficiency virus type 1 interacts with Pr55gag and is incorporated into viruslike particles. J Virol. 1992 Nov;66(11):6304–6313. doi: 10.1128/jvi.66.11.6304-6313.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Petersen L. R., Satten G. A., Dodd R., Busch M., Kleinman S., Grindon A., Lenes B. Duration of time from onset of human immunodeficiency virus type 1 infectiousness to development of detectable antibody. The HIV Seroconversion Study Group. Transfusion. 1994 Apr;34(4):283–289. doi: 10.1046/j.1537-2995.1994.34494233574.x. [DOI] [PubMed] [Google Scholar]
  15. Race E. M., Ramsey K. M., Lucia H. L., Cloyd M. W. Human immunodeficiency virus infection elicits early antibody not detected by standard tests: implications for diagnostics and viral immunology. Virology. 1991 Oct;184(2):716–722. doi: 10.1016/0042-6822(91)90441-d. [DOI] [PubMed] [Google Scholar]
  16. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K. Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature. 1985 Jan 24;313(6000):277–284. doi: 10.1038/313277a0. [DOI] [PubMed] [Google Scholar]
  17. Reagan K. J., Lile C. C., Devash Y., Turner J., Hu Y. W., Kang C. Y. Use of HIV-1 pol gene precursor to detect HIV-1 and HIV-2. Lancet. 1990 Jan 27;335(8683):236–236. doi: 10.1016/0140-6736(90)90338-6. [DOI] [PubMed] [Google Scholar]
  18. Simmonds P., Beatson D., Cuthbert R. J., Watson H., Reynolds B., Peutherer J. F., Parry J. V., Ludlam C. A., Steel C. M. Determinants of HIV disease progression: six-year longitudinal study in the Edinburgh haemophilia/HIV cohort. Lancet. 1991 Nov 9;338(8776):1159–1163. doi: 10.1016/0140-6736(91)92029-2. [DOI] [PubMed] [Google Scholar]
  19. Simon F., Pépin J. M., Brun-Vezinet F., Bouchaud O., Casalino H., Gérard L. Reliability of western blotting for the confirmation of HIV-1 seroconversion. Lancet. 1992 Dec 19;340(8834-8835):1541–1542. doi: 10.1016/0140-6736(92)92790-m. [DOI] [PubMed] [Google Scholar]
  20. Sinicco A., Fora R., Sciandra M., Lucchini A., Caramello P., Gioannini P. Risk of developing AIDS after primary acute HIV-1 infection. J Acquir Immune Defic Syndr. 1993 Jun;6(6):575–581. [PubMed] [Google Scholar]
  21. Sligh J. M., Roodman S. T., Tsai C. C. Flow cytometric indirect immunofluorescence assay with high sensitivity and specificity for detection of antibodies to human immunodeficiency virus (HIV). Am J Clin Pathol. 1989 Feb;91(2):210–214. doi: 10.1093/ajcp/91.2.210. [DOI] [PubMed] [Google Scholar]
  22. Takehara K., Ireland D., Bishop D. H. Co-expression of the hepatitis B surface and core antigens using baculovirus multiple expression vectors. J Gen Virol. 1988 Nov;69(Pt 11):2763–2777. doi: 10.1099/0022-1317-69-11-2763. [DOI] [PubMed] [Google Scholar]
  23. Wagner R., Fliessbach H., Wanner G., Motz M., Niedrig M., Deby G., von Brunn A., Wolf H. Studies on processing, particle formation, and immunogenicity of the HIV-1 gag gene product: a possible component of a HIV vaccine. Arch Virol. 1992;127(1-4):117–137. doi: 10.1007/BF01309579. [DOI] [PubMed] [Google Scholar]
  24. Willerford D. M., Bwayo J. J., Hensel M., Emonyi W., Plummer F. A., Ngugi E. N., Nagelkerke N., Gallatin W. M., Kreiss J. Human immunodeficiency virus infection among high-risk seronegative prostitutes in Nairobi. J Infect Dis. 1993 Jun;167(6):1414–1417. doi: 10.1093/infdis/167.6.1414. [DOI] [PubMed] [Google Scholar]
  25. Zaaijer H. L., v Exel-Oehlers P., Kraaijeveld T., Altena E., Lelie P. N. Early detection of antibodies to HIV-1 by third-generation assays. Lancet. 1992 Sep 26;340(8822):770–772. doi: 10.1016/0140-6736(92)92303-w. [DOI] [PubMed] [Google Scholar]
  26. Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science. 1993 Aug 27;261(5125):1179–1181. doi: 10.1126/science.8356453. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES