Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Jun;34(6):1453–1461. doi: 10.1128/jcm.34.6.1453-1461.1996

DNA fingerprinting of Vibrio cholerae strains with a novel insertion sequence element: a tool to identify epidemic strains.

E M Bik 1, R D Gouw 1, F R Mooi 1
PMCID: PMC229041  PMID: 8735097

Abstract

A novel Vibrio cholerae insertion sequence element, designated IS1004, was characterized and used for DNA fingerprinting of Vibrio spp. IS1004 comprises 628 bp and contains an open reading frame whose product shows a large degree of sequence identity with the IS200-encoded transposase. IS1004 was present in one to eight copies in most of the V. cholerae strains analyzed. The IS1004-generated fingerprints of epidemic V. cholerae strains with serotype O1 were closely related, although it was possible to distinguish between the two biotypes, classical and El Tor. Non-O1 serotype strains generally showed heterogeneous patterns unrelated to those of the epidemic O1 strains. Several strains were observed with identical or related fingerprint patterns but expressed different serotypes. Conversely, strains with different fingerprint patterns but identical serotypes were also found. These observations indicate that the gene clusters coding for distinct O antigens may be transferred horizontally between V. cholerae strains. Two examples of non-O1 strains with a fingerprint resembling that of epidemic O1 strains were found; they were the O139 Bengal strain and an O37 strain. The O139 Bengal strain is closely related to the El Tor biotype. The O37 strain was responsible for a large cholera outbreak in Sudan in 1968 and was classified as a noncholera vibrio. Our study, however, shows that the O37 Sudan strain is genetically closely related to classical O1 strains. Similar to O139 Bengal, O37 Sudan lacked most of the O1 antigen cluster but did contain flanking genes. Thus, O37 Sudan represents a second example of an epidemic V. cholerae strain carrying non-O1 antigens. This study underlines the importance of genotypic methods for the differentiation of V. cholerae strains and for recognition of strains with epidemic potential.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert M. J. Vibrio cholerae O139 Bengal. J Clin Microbiol. 1994 Oct;32(10):2345–2349. doi: 10.1128/jcm.32.10.2345-2349.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Berry A. M., Lock R. A., Thomas S. M., Rajan D. P., Hansman D., Paton J. C. Cloning and nucleotide sequence of the Streptococcus pneumoniae hyaluronidase gene and purification of the enzyme from recombinant Escherichia coli. Infect Immun. 1994 Mar;62(3):1101–1108. doi: 10.1128/iai.62.3.1101-1108.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bik E. M., Bunschoten A. E., Gouw R. D., Mooi F. R. Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. EMBO J. 1995 Jan 16;14(2):209–216. doi: 10.1002/j.1460-2075.1995.tb06993.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bisercić M., Ochman H. The ancestry of insertion sequences common to Escherichia coli and Salmonella typhimurium. J Bacteriol. 1993 Dec;175(24):7863–7868. doi: 10.1128/jb.175.24.7863-7868.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brynestad S., Iwanejko L. A., Stewart G. S., Granum P. E. A complex array of Hpr consensus DNA recognition sequences proximal to the enterotoxin gene in Clostridium perfringens type A. Microbiology. 1994 Jan;140(Pt 1):97–104. doi: 10.1099/13500872-140-1-97. [DOI] [PubMed] [Google Scholar]
  7. Cameron D. N., Khambaty F. M., Wachsmuth I. K., Tauxe R. V., Barrett T. J. Molecular characterization of Vibrio cholerae O1 strains by pulsed-field gel electrophoresis. J Clin Microbiol. 1994 Jul;32(7):1685–1690. doi: 10.1128/jcm.32.7.1685-1690.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Clements M. L., Levine M. M., Young C. R., Black R. E., Lim Y. L., Robins-Browne R. M., Craig J. P. Magnitude, kinetics, and duration of vibriocidal antibody responses in North Americans after ingestion of Vibrio cholerae. J Infect Dis. 1982 Apr;145(4):465–473. doi: 10.1093/infdis/145.4.465. [DOI] [PubMed] [Google Scholar]
  9. Comstock L. E., Maneval D., Jr, Panigrahi P., Joseph A., Levine M. M., Kaper J. B., Morris J. G., Jr, Johnson J. A. The capsule and O antigen in Vibrio cholerae O139 Bengal are associated with a genetic region not present in Vibrio cholerae O1. Infect Immun. 1995 Jan;63(1):317–323. doi: 10.1128/iai.63.1.317-323.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalsgaard A., Serichantalergs O., Pitarangsi C., Echeverria P. Molecular characterization and antibiotic susceptibility of Vibrio cholerae non-O1. Epidemiol Infect. 1995 Feb;114(1):51–63. doi: 10.1017/s0950268800051906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gibert I., Barbé J., Casadesús J. Distribution of insertion sequence IS200 in Salmonella and Shigella. J Gen Microbiol. 1990 Dec;136(12):2555–2560. doi: 10.1099/00221287-136-12-2555. [DOI] [PubMed] [Google Scholar]
  12. Gibert I., Carroll K., Hillyard D. R., Barbé J., Casadesus J. IS200 is not a member of the IS600 family of insertion sequences. Nucleic Acids Res. 1991 Mar 25;19(6):1343–1343. doi: 10.1093/nar/19.6.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guinée P. A., Jansen W. H., Peters P. W. Vibrio cholerae infection and acquired immunity in an adult rabbit model. Zentralbl Bakteriol Mikrobiol Hyg A. 1985 Feb;259(1):118–131. doi: 10.1016/s0176-6724(85)80013-4. [DOI] [PubMed] [Google Scholar]
  14. Kaper J. B., Morris J. G., Jr, Levine M. M. Cholera. Clin Microbiol Rev. 1995 Jan;8(1):48–86. doi: 10.1128/cmr.8.1.48. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaper J. B., Nataro J. P., Roberts N. C., Siebeling R. J., Bradford H. B. Molecular epidemiology of non-O1 Vibrio cholerae and Vibrio mimicus in the U.S. Gulf Coast region. J Clin Microbiol. 1986 Mar;23(3):652–654. doi: 10.1128/jcm.23.3.652-654.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karaolis D. K., Lan R., Reeves P. R. Molecular evolution of the seventh-pandemic clone of Vibrio cholerae and its relationship to other pandemic and epidemic V. cholerae isolates. J Bacteriol. 1994 Oct;176(20):6199–6206. doi: 10.1128/jb.176.20.6199-6206.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lam S., Roth J. R. IS200: a Salmonella-specific insertion sequence. Cell. 1983 Oct;34(3):951–960. doi: 10.1016/0092-8674(83)90552-4. [DOI] [PubMed] [Google Scholar]
  18. Lam S., Roth J. R. Structural and functional studies of insertion element IS200. J Mol Biol. 1986 Jan 20;187(2):157–167. doi: 10.1016/0022-2836(86)90225-1. [DOI] [PubMed] [Google Scholar]
  19. Morris J. G., Jr Non-O group 1 Vibrio cholerae: a look at the epidemiology of an occasional pathogen. Epidemiol Rev. 1990;12:179–191. doi: 10.1093/oxfordjournals.epirev.a036052. [DOI] [PubMed] [Google Scholar]
  20. Mukhopadhyay A. K., Saha P. K., Garg S., Bhattacharya S. K., Shimada T., Takeda T., Takeda Y., Nair G. B. Distribution and virulence of Vibrio cholerae belonging to serogroups other than O1 and O139: a nationwide survey. Epidemiol Infect. 1995 Feb;114(1):65–70. doi: 10.1017/s0950268800051918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nair G. B., Shimada T., Kurazono H., Okuda J., Pal A., Karasawa T., Mihara T., Uesaka Y., Shirai H., Garg S. Characterization of phenotypic, serological, and toxigenic traits of Vibrio cholerae O139 bengal. J Clin Microbiol. 1994 Nov;32(11):2775–2779. doi: 10.1128/jcm.32.11.2775-2779.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nakasone N., Iwanaga M. Pili of Vibrio cholerae non-O1. Infect Immun. 1990 Jun;58(6):1640–1646. doi: 10.1128/iai.58.6.1640-1646.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ramamurthy T., Bag P. K., Pal A., Bhattacharya S. K., Bhattacharya M. K., Shimada T., Takeda T., Karasawa T., Kurazono H., Takeda Y. Virulence patterns of Vibrio cholerae non-O1 strains isolated from hospitalised patients with acute diarrhoea in Calcutta, India. J Med Microbiol. 1993 Oct;39(4):310–317. doi: 10.1099/00222615-39-4-310. [DOI] [PubMed] [Google Scholar]
  25. Rijpkema S. G., Bik E. M., Jansen W. H., Gielen H., Versluis L. F., Stouthamer A. H., Guinée P. A., Mooi F. R. Construction and analysis of a Vibrio cholerae delta-aminolevulinic acid auxotroph which confers protective immunity in a rabbit model. Infect Immun. 1992 Jun;60(6):2188–2193. doi: 10.1128/iai.60.6.2188-2193.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Soria G., Barbé J., Gibert I. Molecular fingerprinting of Salmonella typhimurium by IS200-typing as a tool for epidemiological and evolutionary studies. Microbiologia. 1994 Mar-Jun;10(1-2):57–68. [PubMed] [Google Scholar]
  27. Stanley J., Baquar N., Threlfall E. J. Genotypes and phylogenetic relationships of Salmonella typhimurium are defined by molecular fingerprinting of IS200 and 16S rrn loci. J Gen Microbiol. 1993 Jun;139(Pt 6):1133–1140. doi: 10.1099/00221287-139-6-1133. [DOI] [PubMed] [Google Scholar]
  28. Stanley J., Powell N., Jones C., Burnens A. P. A framework for IS200, 16S rRNA gene and plasmid-profile analysis in Salmonella serogroup D1. J Med Microbiol. 1994 Aug;41(2):112–119. doi: 10.1099/00222615-41-2-112. [DOI] [PubMed] [Google Scholar]
  29. Stroeher U. H., Karageorgos L. E., Morona R., Manning P. A. Serotype conversion in Vibrio cholerae O1. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2566–2570. doi: 10.1073/pnas.89.7.2566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zinnaka Y., Carpenter C. C., Jr An enterotoxin produced by noncholera vibrios. Johns Hopkins Med J. 1972 Dec;131(6):403–411. [PubMed] [Google Scholar]
  31. van Embden J. D., Cave M. D., Crawford J. T., Dale J. W., Eisenach K. D., Gicquel B., Hermans P., Martin C., McAdam R., Shinnick T. M. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993 Feb;31(2):406–409. doi: 10.1128/jcm.31.2.406-409.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. van Soolingen D., de Haas P. E., Hermans P. W., van Embden J. D. DNA fingerprinting of Mycobacterium tuberculosis. Methods Enzymol. 1994;235:196–205. doi: 10.1016/0076-6879(94)35141-4. [DOI] [PubMed] [Google Scholar]
  33. van der Zee A., Agterberg C., van Agterveld M., Peeters M., Mooi F. R. Characterization of IS1001, an insertion sequence element of Bordetella parapertussis. J Bacteriol. 1993 Jan;175(1):141–147. doi: 10.1128/jb.175.1.141-147.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES