Skip to main content
Journal of Clinical Microbiology logoLink to Journal of Clinical Microbiology
. 1996 Jun;34(6):1468–1473. doi: 10.1128/jcm.34.6.1468-1473.1996

Molecular subtyping of Neisseria meningitidis serogroup B: comparison of five methods.

B Swaminathan 1, G M Matar 1, M W Reeves 1, L M Graves 1, G Ajello 1, W F Bibb 1, L O Helsel 1, M Morales 1, H Dronavalli 1, M el-Swify 1, W DeWitt 1, S B Hunter 1
PMCID: PMC229044  PMID: 8735100

Abstract

In order to compare methods for subtyping Neisseria meningitidis serogroup B isolates, 96 isolates obtained from various locations in the United States and northwestern Europe were subtyped by five methods: monoclonal antibody (MAb)-based serotyping and serosubtyping, DNA macrorestriction analysis by pulsed-field gel electrophoresis (PFGE), multilocus enzyme electrophoresis (MEE), ribotyping, and PCR-restriction fragment length polymorphism of the internally transcribed spacer region of the rRNA operon (ITS PCR-RFLP). All N. meningitidis serogroup B isolates were typeable by PFGE, MEE, ribotyping, and ITS PCR-RFLP. Only 44.8% of the isolates were completely typeable (both serotype and serosubtype determination) by MAb-based serotyping and serosubtyping. 60.4% of the isolates could be serotyped but not serosubtyped, and 90.6% of the isolates could be either serotyped or serosubtyped. Simpson's discrimination indices of diversity for the methods were as follows: PFGE, 99.7%; MEE, 99.4%; ribotyping, 98.8%; MAb serotyping, 75.8%; MAb serotyping and/or serosubtyping 97.5%; and ITS PCR-RFLP, 84.2%. The high degree of diversity observed by PFGE, MEE, and ribotyping can be explained by the fact that isolates were collected from different geographic locations at various times. PFGE, MEE, and ribotyping showed greater discriminatory abilities than MAb-based serotyping and serosubtyping or ITS PCR-RFLP.

Full Text

The Full Text of this article is available as a PDF (537.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdillahi H., Poolman J. T. Neisseria meningitidis group B serosubtyping using monoclonal antibodies in whole-cell ELISA. Microb Pathog. 1988 Jan;4(1):27–32. doi: 10.1016/0882-4010(88)90045-9. [DOI] [PubMed] [Google Scholar]
  2. Ashton F. E., Mancino L., Ryan A. J., Poolman J. T., Abdillahi H., Zollinger W. D. Serotypes and subtypes of Neisseria meningitidis serogroup B strains associated with meningococcal disease in Canada, 1977-1989. Can J Microbiol. 1991 Aug;37(8):613–617. doi: 10.1139/m91-104. [DOI] [PubMed] [Google Scholar]
  3. Bygraves J. A., Maiden M. C. Analysis of the clonal relationships between strains of Neisseria meningitidis by pulsed field gel electrophoresis. J Gen Microbiol. 1992 Mar;138(3):523–531. doi: 10.1099/00221287-138-3-523. [DOI] [PubMed] [Google Scholar]
  4. Caugant D. A., Bol P., Høiby E. A., Zanen H. C., Frøholm L. O. Clones of serogroup B Neisseria meningitidis causing systemic disease in The Netherlands, 1958-1986. J Infect Dis. 1990 Oct;162(4):867–874. doi: 10.1093/infdis/162.4.867. [DOI] [PubMed] [Google Scholar]
  5. Caugant D. A., Frøholm L. O., Bøvre K., Holten E., Frasch C. E., Mocca L. F., Zollinger W. D., Selander R. K. Intercontinental spread of a genetically distinctive complex of clones of Neisseria meningitidis causing epidemic disease. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4927–4931. doi: 10.1073/pnas.83.13.4927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Caugant D. A., Mocca L. F., Frasch C. E., Frøholm L. O., Zollinger W. D., Selander R. K. Genetic structure of Neisseria meningitidis populations in relation to serogroup, serotype, and outer membrane protein pattern. J Bacteriol. 1987 Jun;169(6):2781–2792. doi: 10.1128/jb.169.6.2781-2792.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Frasch C. E., Zollinger W. D., Poolman J. T. Serotype antigens of Neisseria meningitidis and a proposed scheme for designation of serotypes. Rev Infect Dis. 1985 Jul-Aug;7(4):504–510. doi: 10.1093/clinids/7.4.504. [DOI] [PubMed] [Google Scholar]
  8. Graves L. M., Swaminathan B., Reeves M. W., Wenger J. Ribosomal DNA fingerprinting of Listeria monocytogenes using a digoxigenin-labeled DNA probe. Eur J Epidemiol. 1991 Jan;7(1):77–82. doi: 10.1007/BF00221345. [DOI] [PubMed] [Google Scholar]
  9. Hunter P. R., Gaston M. A. Numerical index of the discriminatory ability of typing systems: an application of Simpson's index of diversity. J Clin Microbiol. 1988 Nov;26(11):2465–2466. doi: 10.1128/jcm.26.11.2465-2466.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Jordens J. Z., Pennington T. H. Characterization of Neisseria meningitidis isolated by ribosomal RNA gene restriction patterns and restriction endonuclease digestion of chromosomal DNA. Epidemiol Infect. 1991 Oct;107(2):253–262. doi: 10.1017/s0950268800048901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maiden M. C., Bygraves J. A., McCarvil J., Feavers I. M. Identification of meningococcal serosubtypes by polymerase chain reaction. J Clin Microbiol. 1992 Nov;30(11):2835–2841. doi: 10.1128/jcm.30.11.2835-2841.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maiden M. C., Feavers I. M. Meningococcal typing. J Med Microbiol. 1994 Mar;40(3):157–158. doi: 10.1099/00222615-40-3-157. [DOI] [PubMed] [Google Scholar]
  13. Maiden M. C. Population genetics of a transformable bacterium: the influence of horizontal genetic exchange on the biology of Neisseria meningitidis. FEMS Microbiol Lett. 1993 Sep 15;112(3):243–250. doi: 10.1111/j.1574-6968.1993.tb06457.x. [DOI] [PubMed] [Google Scholar]
  14. McLaughlin G. L., Howe D. K., Biggs D. R., Smith A. R., Ludwinski P., Fox B. C., Tripathy D. N., Frasch C. E., Wenger J. D., Carey R. B. Amplification of rDNA loci to detect and type Neisseria meningitidis and other eubacteria. Mol Cell Probes. 1993 Feb;7(1):7–17. doi: 10.1006/mcpr.1993.1002. [DOI] [PubMed] [Google Scholar]
  15. Poolman J. T., Kriz-Kuzemenska P., Ashton F., Bibb W., Dankert J., Demina A., Frøholm L. O., Hassan-King M., Jones D. M., Lind I. Serotypes and subtypes of Neisseria meningitidis: results of an international study comparing sensitivities and specificities of monoclonal antibodies. Clin Diagn Lab Immunol. 1995 Jan;2(1):69–72. doi: 10.1128/cdli.2.1.69-72.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reeves M. W., Evins G. M., Heiba A. A., Plikaytis B. D., Farmer J. J., 3rd Clonal nature of Salmonella typhi and its genetic relatedness to other salmonellae as shown by multilocus enzyme electrophoresis, and proposal of Salmonella bongori comb. nov. J Clin Microbiol. 1989 Feb;27(2):313–320. doi: 10.1128/jcm.27.2.313-320.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Riou J. Y., Poolman J. T., Auriol J., Lomprez F., Guibourdenche M. Sero-subtyping of group B, C, Y and A meningococci isolated in France in 1988. Ann Biol Clin (Paris) 1990;48(4):227–231. [PubMed] [Google Scholar]
  18. Schwartz B., Moore P. S., Broome C. V. Global epidemiology of meningococcal disease. Clin Microbiol Rev. 1989 Apr;2 (Suppl):S118–S124. doi: 10.1128/cmr.2.suppl.s118. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Selander R. K., Caugant D. A., Ochman H., Musser J. M., Gilmour M. N., Whittam T. S. Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics. Appl Environ Microbiol. 1986 May;51(5):873–884. doi: 10.1128/aem.51.5.873-884.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tondella M. L., Sacchi C. T., Neves B. C. Ribotyping as an additional molecular marker for studying Neisseria meningitidis serogroup B epidemic strains. J Clin Microbiol. 1994 Nov;32(11):2745–2748. doi: 10.1128/jcm.32.11.2745-2748.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wedege E., Caugant D. A., Frøholm L. O., Zollinger W. D. Characterization of serogroup A and B strains of Neisseria meningitidis with serotype 4 and 21 monoclonal antibodies and by multilocus enzyme electrophoresis. J Clin Microbiol. 1991 Jul;29(7):1486–1492. doi: 10.1128/jcm.29.7.1486-1492.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Woods J. P., Kersulyte D., Tolan R. W., Jr, Berg C. M., Berg D. E. Use of arbitrarily primed polymerase chain reaction analysis to type disease and carrier strains of Neisseria meningitidis isolated during a university outbreak. J Infect Dis. 1994 Jun;169(6):1384–1389. doi: 10.1093/infdis/169.6.1384. [DOI] [PubMed] [Google Scholar]
  23. Woods T. C., Helsel L. O., Swaminathan B., Bibb W. F., Pinner R. W., Gellin B. G., Collin S. F., Waterman S. H., Reeves M. W., Brenner D. J. Characterization of Neisseria meningitidis serogroup C by multilocus enzyme electrophoresis and ribosomal DNA restriction profiles (ribotyping). J Clin Microbiol. 1992 Jan;30(1):132–137. doi: 10.1128/jcm.30.1.132-137.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yakubu D. E., Pennington T. H. Epidemiological evaluation of Neisseria meningitidis serogroup B by pulsed-field gel electrophoresis. FEMS Immunol Med Microbiol. 1995 Feb;10(3-4):185–189. doi: 10.1111/j.1574-695X.1995.tb00032.x. [DOI] [PubMed] [Google Scholar]
  25. Zhu P., Hu X., Xu L. Typing Neisseria meningitidis by analysis of restriction fragment length polymorphisms in the gene encoding the class 1 outer membrane protein: application to assessment of epidemics throughout the last 4 decades in China. J Clin Microbiol. 1995 Feb;33(2):458–462. doi: 10.1128/jcm.33.2.458-462.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES