Abstract
To evaluate the respective contributions of patient-to-patient transmission and endogenous acquisition of Enterobacter aerogenes isolates, we conducted a prospective epidemiologic study in two intensive care units (ICUs) between May 1994 and April 1995. We collected a total of 185 E. aerogenes isolates: 130 from 51 patients in a surgical ICU (SICU), 45 from 26 patients in a medical ICU (MICU), and 10 from the environments in these two ICUs. All isolates were typed by random amplification of polymorphic DNA and enterobacterial repetitive intergenic consensus PCR. Among the 175 clinical isolate, we observed 40 different profiles by random amplification of polymorphic DNA and 36 different profiles by enterobacterial repetitive intergenic consensus PCR. We identified a ubiquitous and prevalent clone, corresponding to 58% of SICU and 41% of MICU clinical isolates. Three epidemiologically related strains were specific to each ICU and represented 17% of SICU and 24% of MICU clinical isolates; unique type strains represented 17 and 29% of SICU and MICU clinical isolates, respectively, and E. aerogenes strains which were spread to a limited degree and which were isolated less than five times during the 1-year study period represented 8 and 6% of SICU and MICU clinical isolates, respectively. Our results show that E. aerogenes is acquired in the ICU in three different ways: patient-to-patient spread of a prevalent or an epidemiologically related strain, acquisition de novo of a strain from patients' own flora, and acquisition of a nonendemic strain followed by occasional patient-to-patient transmission. The findings point out the importance of patient-to-patient transmission in E. aerogenes acquisition and suggest that changes in E. aerogenes ecology in the hospital have taken place during the past decade.
Full Text
The Full Text of this article is available as a PDF (804.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acolet D., Ahmet Z., Houang E., Hurley R., Kaufmann M. E. Enterobacter cloacae in a neonatal intensive care unit: account of an outbreak and its relationship to use of third generation cephalosporins. J Hosp Infect. 1994 Dec;28(4):273–286. doi: 10.1016/0195-6701(94)90091-4. [DOI] [PubMed] [Google Scholar]
- Burchard K. W., Barrall D. T., Reed M., Slotman G. J. Enterobacter bacteremia in surgical patients. Surgery. 1986 Nov;100(5):857–862. [PubMed] [Google Scholar]
- Chow J. W., Fine M. J., Shlaes D. M., Quinn J. P., Hooper D. C., Johnson M. P., Ramphal R., Wagener M. M., Miyashiro D. K., Yu V. L. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991 Oct 15;115(8):585–590. doi: 10.7326/0003-4819-115-8-585. [DOI] [PubMed] [Google Scholar]
- Chow J. W., Yu V. L., Shlaes D. M. Epidemiologic perspectives on Enterobacter for the infection control professional. Am J Infect Control. 1994 Aug;22(4):195–201. doi: 10.1016/0196-6553(94)90067-1. [DOI] [PubMed] [Google Scholar]
- Davin-Regli A., Abed Y., Charrel R. N., Bollet C., de Micco P. Variations in DNA concentrations significantly affect the reproducibility of RAPD fingerprint patterns. Res Microbiol. 1995 Sep;146(7):561–568. doi: 10.1016/0923-2508(96)80562-6. [DOI] [PubMed] [Google Scholar]
- Davin-Regli A., Saux P., Bollet C., Gouin F., De Micco P. Investigation of outbreaks of Enterobacter aerogenes colonisation and infection in intensive care units by random amplification of polymorphic DNA. J Med Microbiol. 1996 Feb;44(2):89–98. doi: 10.1099/00222615-44-2-89. [DOI] [PubMed] [Google Scholar]
- Falkiner F. R. Enterobacter in hospital. J Hosp Infect. 1992 Mar;20(3):137–140. doi: 10.1016/0195-6701(92)90081-v. [DOI] [PubMed] [Google Scholar]
- Flynn D. M., Weinstein R. A., Nathan C., Gaston M. A., Kabins S. A. Patients' endogenous flora as the source of "nosocomial" Enterobacter in cardiac surgery. J Infect Dis. 1987 Aug;156(2):363–368. doi: 10.1093/infdis/156.2.363. [DOI] [PubMed] [Google Scholar]
- Gaston M. A. Enterobacter: an emerging nosocomial pathogen. J Hosp Infect. 1988 Apr;11(3):197–208. doi: 10.1016/0195-6701(88)90098-9. [DOI] [PubMed] [Google Scholar]
- Georghiou P. R., Hamill R. J., Wright C. E., Versalovic J., Koeuth T., Watson D. A., Lupski J. R. Molecular epidemiology of infections due to Enterobacter aerogenes: identification of hospital outbreak-associated strains by molecular techniques. Clin Infect Dis. 1995 Jan;20(1):84–94. doi: 10.1093/clinids/20.1.84. [DOI] [PubMed] [Google Scholar]
- Grattard F., Pozzetto B., Berthelot P., Rayet I., Ros A., Lauras B., Gaudin O. G. Arbitrarily primed PCR, ribotyping, and plasmid pattern analysis applied to investigation of a nosocomial outbreak due to Enterobacter cloacae in a neonatal intensive care unit. J Clin Microbiol. 1994 Mar;32(3):596–602. doi: 10.1128/jcm.32.3.596-602.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haertl R., Bandlow G. Epidemiological fingerprinting of Enterobacter cloacae by small-fragment restriction endonuclease analysis and pulsed-field gel electrophoresis of genomic restriction fragments. J Clin Microbiol. 1993 Jan;31(1):128–133. doi: 10.1128/jcm.31.1.128-133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu P. Y., Lau Y. J., Hu B. S., Shyr J. M., Shi Z. Y., Tsai W. S., Lin Y. H., Tseng C. Y. Analysis of clonal relationships among isolates of Shigella sonnei by different molecular typing methods. J Clin Microbiol. 1995 Jul;33(7):1779–1783. doi: 10.1128/jcm.33.7.1779-1783.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meyers H. B., Fontanilla E., Mascola L. Risk factors for development of sepsis in a hospital outbreak of Enterobacter aerogenes. Am J Infect Control. 1988 Jun;16(3):118–122. doi: 10.1016/0196-6553(88)90050-8. [DOI] [PubMed] [Google Scholar]
- Philippon A., Labia R., Jacoby G. Extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 1989 Aug;33(8):1131–1136. doi: 10.1128/aac.33.8.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pruckler J. M., Mermel L. A., Benson R. F., Giorgio C., Cassiday P. K., Breiman R. F., Whitney C. G., Fields B. S. Comparison of Legionella pneumophila isolates by arbitrarily primed PCR and pulsed-field gel electrophoresis: analysis from seven epidemic investigations. J Clin Microbiol. 1995 Nov;33(11):2872–2875. doi: 10.1128/jcm.33.11.2872-2875.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodriguez-Barradas M. C., Hamill R. J., Houston E. D., Georghiou P. R., Clarridge J. E., Regnery R. L., Koehler J. E. Genomic fingerprinting of Bartonella species by repetitive element PCR for distinguishing species and isolates. J Clin Microbiol. 1995 May;33(5):1089–1093. doi: 10.1128/jcm.33.5.1089-1093.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaberg D. R., Culver D. H., Gaynes R. P. Major trends in the microbial etiology of nosocomial infection. Am J Med. 1991 Sep 16;91(3B):72S–75S. doi: 10.1016/0002-9343(91)90346-y. [DOI] [PubMed] [Google Scholar]
- Shlaes D. M. The clinical relevance of Enterobacter infections. Clin Ther. 1993;15 (Suppl A):21–28. [PubMed] [Google Scholar]
- Versalovic J., Koeuth T., Lupski J. R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991 Dec 25;19(24):6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weinstein R. A. Endemic emergence of cephalosporin-resistant Enterobacter: relation to prior therapy. Infect Control. 1986 Feb;7(2 Suppl):120–123. doi: 10.1017/s0195941700065632. [DOI] [PubMed] [Google Scholar]
- Williams J. G., Kubelik A. R., Livak K. J., Rafalski J. A., Tingey S. V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990 Nov 25;18(22):6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woods C. R., Jr, Versalovic J., Koeuth T., Lupski J. R. Analysis of relationships among isolates of Citrobacter diversus by using DNA fingerprints generated by repetitive sequence-based primers in the polymerase chain reaction. J Clin Microbiol. 1992 Nov;30(11):2921–2929. doi: 10.1128/jcm.30.11.2921-2929.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- de Lamballerie X., Zandotti C., Vignoli C., Bollet C., de Micco P. A one-step microbial DNA extraction method using "Chelex 100" suitable for gene amplification. Res Microbiol. 1992 Oct;143(8):785–790. doi: 10.1016/0923-2508(92)90107-y. [DOI] [PubMed] [Google Scholar]
- van Belkum A. DNA fingerprinting of medically important microorganisms by use of PCR. Clin Microbiol Rev. 1994 Apr;7(2):174–184. doi: 10.1128/cmr.7.2.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
