Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Dec 2;123(6):1751–1759. doi: 10.1083/jcb.123.6.1751

Role of the transmembrane and extracytoplasmic domain of beta subunits in subunit assembly, intracellular transport, and functional expression of Na,K-pumps

PMCID: PMC2290884  PMID: 8276895

Abstract

The ubiquitous Na,K- and the gastric H,K-pumps are heterodimeric plasma membrane proteins composed of an alpha and a beta subunit. The H,K- ATPase beta subunit (beta HK) can partially act as a surrogate for the Na,K-ATPase beta subunit (beta NK) in the formation of functional Na,K- pumps (Horisberger et al., 1991. J. Biol. Chem. 257:10338-10343). We have examined the role of the transmembrane and/or the ectodomain of beta NK in (a) its ER retention in the absence of concomitant synthesis of Na,K-ATPase alpha subunits (alpha NK) and (b) the functional expression of Na,K-pumps at the cell surface and their activation by external K+. We have constructed chimeric proteins between Xenopus beta NK and rabbit beta HK by exchanging their NH2-terminal plus transmembrane domain with their COOH-terminal ectodomain (beta NK/HK, beta HK/NK). We have expressed these constructs with or without coexpression of alpha NK in the Xenopus oocyte. In the absence of alpha NK, Xenopus beta NK and all chimera that contained the ectodomain of beta NK were retained in the ER while beta HK and all chimera with the ectodomain of beta HK could leave the ER suggesting that ER retention of unassembled Xenopus beta NK is mediated by a retention signal in the ectodomain. When coexpressed with alpha NK, only beta NK and beta NK/HK chimera assembled efficiently with alpha NK leading to similar high expression of functional Na,K-pumps at the cell surface that exhibited, however, a different apparent K+ affinity. beta HK or chimera with the transmembrane domain of beta HK assembled less efficiently with alpha NK leading to lower expression of functional Na,K-pumps with a different apparent K+ affinity. The data indicate that the transmembrane domain of beta NK is important for efficient assembly with alpha NK and that both the transmembrane and the ectodomain of beta subunits play a role in modulating the transport activity of Na,K- pumps.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackermann U., Geering K. Beta 1- and beta 3-subunits can associate with presynthesized alpha-subunits of Xenopus oocyte Na,K-ATPase. J Biol Chem. 1992 Jun 25;267(18):12911–12915. [PubMed] [Google Scholar]
  2. Ackermann U., Geering K. Mutual dependence of Na,K-ATPase alpha- and beta-subunits for correct posttranslational processing and intracellular transport. FEBS Lett. 1990 Aug 20;269(1):105–108. doi: 10.1016/0014-5793(90)81130-g. [DOI] [PubMed] [Google Scholar]
  3. Cosson P., Bonifacino J. S. Role of transmembrane domain interactions in the assembly of class II MHC molecules. Science. 1992 Oct 23;258(5082):659–662. doi: 10.1126/science.1329208. [DOI] [PubMed] [Google Scholar]
  4. Eakle K. A., Kim K. S., Kabalin M. A., Farley R. A. High-affinity ouabain binding by yeast cells expressing Na+, K(+)-ATPase alpha subunits and the gastric H+, K(+)-ATPase beta subunit. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2834–2838. doi: 10.1073/pnas.89.7.2834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Flynn G. C., Pohl J., Flocco M. T., Rothman J. E. Peptide-binding specificity of the molecular chaperone BiP. Nature. 1991 Oct 24;353(6346):726–730. doi: 10.1038/353726a0. [DOI] [PubMed] [Google Scholar]
  6. Geering K., Girardet M., Bron C., Kraehenbühl J. P., Rossier B. C. Hormonal regulation of (Na+,K+)-ATPase biosynthesis in the toad bladder. Effect of aldosterone and 3,5,3'-triiodo-L-thyronine. J Biol Chem. 1982 Sep 10;257(17):10338–10343. [PubMed] [Google Scholar]
  7. Geering K., Meyer D. I., Paccolat M. P., Kraehenbühl J. P., Rossier B. C. Membrane insertion of alpha- and beta-subunits of Na+,K+-ATPase. J Biol Chem. 1985 Apr 25;260(8):5154–5160. [PubMed] [Google Scholar]
  8. Geering K. The functional role of the beta-subunit in the maturation and intracellular transport of Na,K-ATPase. FEBS Lett. 1991 Jul 22;285(2):189–193. doi: 10.1016/0014-5793(91)80801-9. [DOI] [PubMed] [Google Scholar]
  9. Girardet M., Geering K., Frantes J. M., Geser D., Rossier B. C., Kraehenbuhl J. P., Bron C. Immunochemical evidence for a transmembrane orientation of both the (Na+, K+)-ATPase subunits. Biochemistry. 1981 Nov 10;20(23):6684–6691. doi: 10.1021/bi00526a025. [DOI] [PubMed] [Google Scholar]
  10. Good P. J., Welch R. C., Barkan A., Somasekhar M. B., Mertz J. E. Both VP2 and VP3 are synthesized from each of the alternative spliced late 19S RNA species of simian virus 40. J Virol. 1988 Mar;62(3):944–953. doi: 10.1128/jvi.62.3.944-953.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horisberger J. D., Jaunin P., Good P. J., Rossier B. C., Geering K. Coexpression of alpha 1 with putative beta 3 subunits results in functional Na+/K+ pumps in Xenopus oocytes. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8397–8400. doi: 10.1073/pnas.88.19.8397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horisberger J. D., Jaunin P., Reuben M. A., Lasater L. S., Chow D. C., Forte J. G., Sachs G., Rossier B. C., Geering K. The H,K-ATPase beta-subunit can act as a surrogate for the beta-subunit of Na,K-pumps. J Biol Chem. 1991 Oct 15;266(29):19131–19134. [PubMed] [Google Scholar]
  13. Hurtley S. M., Helenius A. Protein oligomerization in the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:277–307. doi: 10.1146/annurev.cb.05.110189.001425. [DOI] [PubMed] [Google Scholar]
  14. Jaisser F., Canessa C. M., Horisberger J. D., Rossier B. C. Primary sequence and functional expression of a novel ouabain-resistant Na,K-ATPase. The beta subunit modulates potassium activation of the Na,K-pump. J Biol Chem. 1992 Aug 25;267(24):16895–16903. [PubMed] [Google Scholar]
  15. Jaunin P., Horisberger J. D., Richter K., Good P. J., Rossier B. C., Geering K. Processing, intracellular transport, and functional expression of endogenous and exogenous alpha-beta 3 Na,K-ATPase complexes in Xenopus oocytes. J Biol Chem. 1992 Jan 5;267(1):577–585. [PubMed] [Google Scholar]
  16. Jørgensen P. L., Andersen J. P. Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol. 1988 Jul;103(2):95–120. doi: 10.1007/BF01870942. [DOI] [PubMed] [Google Scholar]
  17. Kundu A., Jabbar M. A., Nayak D. P. Cell surface transport, oligomerization, and endocytosis of chimeric type II glycoproteins: role of cytoplasmic and anchor domains. Mol Cell Biol. 1991 May;11(5):2675–2685. doi: 10.1128/mcb.11.5.2675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lutsenko S., Kaplan J. H. Evidence of a role for the Na,K-ATPase beta-subunit in active cation transport. Ann N Y Acad Sci. 1992 Nov 30;671:147–155. doi: 10.1111/j.1749-6632.1992.tb43792.x. [DOI] [PubMed] [Google Scholar]
  19. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res. 1984 Sep 25;12(18):7035–7056. doi: 10.1093/nar/12.18.7035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mercier F., Reggio H., Devilliers G., Bataille D., Mangeat P. A marker of acid-secreting membrane movement in rat gastric parietal cells. Biol Cell. 1989;65(1):7–20. [PubMed] [Google Scholar]
  21. Nelson R. M., Long G. L. A general method of site-specific mutagenesis using a modification of the Thermus aquaticus polymerase chain reaction. Anal Biochem. 1989 Jul;180(1):147–151. doi: 10.1016/0003-2697(89)90103-6. [DOI] [PubMed] [Google Scholar]
  22. Noguchi S., Maeda M., Futai M., Kawamura M. Assembly of a hybrid from the alpha subunit of Na+/K(+)-ATPase and the beta subunit of H+/K(+)-ATPase. Biochem Biophys Res Commun. 1992 Jan 31;182(2):659–666. doi: 10.1016/0006-291x(92)91783-m. [DOI] [PubMed] [Google Scholar]
  23. Pelham H. R. Control of protein exit from the endoplasmic reticulum. Annu Rev Cell Biol. 1989;5:1–23. doi: 10.1146/annurev.cb.05.110189.000245. [DOI] [PubMed] [Google Scholar]
  24. Rakowski R. F., Vasilets L. A., LaTona J., Schwarz W. A negative slope in the current-voltage relationship of the Na+/K+ pump in Xenopus oocytes produced by reduction of external [K+]. J Membr Biol. 1991 Apr;121(2):177–187. doi: 10.1007/BF01870531. [DOI] [PubMed] [Google Scholar]
  25. Renaud K. J., Inman E. M., Fambrough D. M. Cytoplasmic and transmembrane domain deletions of Na,K-ATPase beta-subunit. Effects on subunit assembly and intracellular transport. J Biol Chem. 1991 Oct 25;266(30):20491–20497. [PubMed] [Google Scholar]
  26. Reuben M. A., Lasater L. S., Sachs G. Characterization of a beta subunit of the gastric H+/K(+)-transporting ATPase. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6767–6771. doi: 10.1073/pnas.87.17.6767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rose J. K., Doms R. W. Regulation of protein export from the endoplasmic reticulum. Annu Rev Cell Biol. 1988;4:257–288. doi: 10.1146/annurev.cb.04.110188.001353. [DOI] [PubMed] [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schmalzing G., Kröner S., Schachner M., Gloor S. The adhesion molecule on glia (AMOG/beta 2) and alpha 1 subunits assemble to functional sodium pumps in Xenopus oocytes. J Biol Chem. 1992 Oct 5;267(28):20212–20216. [PubMed] [Google Scholar]
  30. Skou J. C., Esmann M. The Na,K-ATPase. J Bioenerg Biomembr. 1992 Jun;24(3):249–261. doi: 10.1007/BF00768846. [DOI] [PubMed] [Google Scholar]
  31. Takeyasu K., Tamkun M. M., Renaud K. J., Fambrough D. M. Ouabain-sensitive (Na+ + K+)-ATPase activity expressed in mouse L cells by transfection with DNA encoding the alpha-subunit of an avian sodium pump. J Biol Chem. 1988 Mar 25;263(9):4347–4354. [PubMed] [Google Scholar]
  32. Takeyasu K., Tamkun M. M., Siegel N. R., Fambrough D. M. Expression of hybrid (Na+ + K+)-ATPase molecules after transfection of mouse Ltk-cells with DNA encoding the beta-subunit of an avian brain sodium pump. J Biol Chem. 1987 Aug 5;262(22):10733–10740. [PubMed] [Google Scholar]
  33. Verrall S., Hall Z. W. The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly. Cell. 1992 Jan 10;68(1):23–31. doi: 10.1016/0092-8674(92)90203-o. [DOI] [PubMed] [Google Scholar]
  34. Verrey F., Kairouz P., Schaerer E., Fuentes P., Geering K., Rossier B. C., Kraehenbuhl J. P. Primary sequence of Xenopus laevis Na+-K+-ATPase and its localization in A6 kidney cells. Am J Physiol. 1989 Jun;256(6 Pt 2):F1034–F1043. doi: 10.1152/ajprenal.1989.256.6.F1034. [DOI] [PubMed] [Google Scholar]
  35. Wallmark B., Lorentzon P., Sachs G. The gastric H+,K(+)-ATPase. J Intern Med Suppl. 1990;732:3–8. doi: 10.1111/j.1365-2796.1990.tb01465.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES