Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1993 Dec 2;123(6):1577–1586. doi: 10.1083/jcb.123.6.1577

Multiple levels of control of the stage- and region-specific expression of rat intestinal lactase

PMCID: PMC2290892  PMID: 8253852

Abstract

To elucidate the mechanisms leading to the functional regionalization of the digestive epithelium, lactase expression was analyzed at the protein, mRNA and gene levels, along the intestinal tract at various stages of the rat postnatal development. In the colon of neonates, the transient expression of mRNA and enzyme correlated well with gene transcription. In contrast to the colon, complex patterns were observed in the small intestine. In suckling animals, the mRNA was present at a high level despite the progressive decline of enzyme activity. Crypts were devoid of mRNA and the transcript mainly accumulated in the lower half of the villi. From weaning onwards, a functional regionalization of the epithelium was defined, characterized by the modification of the longitudinal distribution of lactase mRNA. Indeed the transcript remained abundant in the distal duodenum, jejunum and proximal ileum, but decreased in the proximal duodenum and became virtually absent in the distal ileum. Concomitantly, the mRNA and enzyme distribution along the villi changed in the different segments of the small intestine. Patterns similar to those described in sucklings were retained in the adult jejunum. In contrast, mRNA and enzyme could no longer be detected in the distal ileum, while mosaicism appeared in the proximal duodenum. In vitro transcription assays carried out with isolated nuclei suggested that the decay of lactase mRNA in the proximal duodenum at weaning was associated with a decreasing rate of transcription of the gene. However active gene transcription was retained in the nuclei of the adult jejunum and ileum. The loss of mRNA in the adult distal ileum despite the maintenance of active transcription did not result from an intragenic block of pre-RNA elongation, as shown by transcription assays carried out at various positions of the lactase gene. In addition, we looked for the ontogenic decline of lactase protein despite the maintenance of a high amount of mRNA in the jejunum, and it became evident that the fraction of mRNA present in polysomes was constant with age. Taken together, these data indicate that lactase constitutes an unusual marker of development and of functional regionalization of the intestinal tract which exhibits a complex time- and space-specific pattern of gene, mRNA, and protein expression. The distinct patterns occurring in the duodenum, jejunum, ileum, and the colon of pre- and postweaned rats depend on a combination of transcriptional, posttranscriptional, and posttranslational levels of regulation. and are associated with a different mRNA distribution along villi in each intestinal segment.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boukamel R., Freund J. N. The rat LPH gene 5' region: comparative structure with the human gene. DNA Seq. 1992;3(2):119–121. doi: 10.3109/10425179209034006. [DOI] [PubMed] [Google Scholar]
  2. Büller H. A., Kothe M. J., Goldman D. A., Grubman S. A., Sasak W. V., Matsudaira P. T., Montgomery R. K., Grand R. J. Coordinate expression of lactase-phlorizin hydrolase mRNA and enzyme levels in rat intestine during development. J Biol Chem. 1990 Apr 25;265(12):6978–6983. [PubMed] [Google Scholar]
  3. Castillo R. O., Reisenauer A. M., Kwong L. K., Tsuboi K. K., Quan R., Gray G. M. Intestinal lactase in the neonatal rat. Maturational changes in intracellular processing and brush-border degradation. J Biol Chem. 1990 Sep 15;265(26):15889–15893. [PubMed] [Google Scholar]
  4. Chandrasena G., Sunitha I., Lau C., Nanthakumar N. N., Henning S. J. Expression of sucrase-isomaltase mRNA along the villus-crypt axis in the rat small intestine. Cell Mol Biol. 1992 May;38(3):243–254. [PubMed] [Google Scholar]
  5. Dauça M., Bouziges F., Colin S., Kedinger M., Keller M. K., Schilt J., Simon-Assmann P., Haffen K. Development of the vertebrate small intestine and mechanisms of cell differentiation. Int J Dev Biol. 1990 Mar;34(1):205–218. [PubMed] [Google Scholar]
  6. Duluc I., Boukamel R., Mantei N., Semenza G., Raul F., Freund J. N. Sequence of the precursor of intestinal lactase-phlorizin hydrolase from fetal rat. Gene. 1991 Jul 22;103(2):275–276. doi: 10.1016/0378-1119(91)90286-k. [DOI] [PubMed] [Google Scholar]
  7. Duluc I., Galluser M., Raul F., Freund J. N. Dietary control of the lactase mRNA distribution along the rat small intestine. Am J Physiol. 1992 Jun;262(6 Pt 1):G954–G961. doi: 10.1152/ajpgi.1992.262.6.G954. [DOI] [PubMed] [Google Scholar]
  8. Escher J. C., de Koning N. D., van Engen C. G., Arora S., Büller H. A., Montgomery R. K., Grand R. J. Molecular basis of lactase levels in adult humans. J Clin Invest. 1992 Feb;89(2):480–483. doi: 10.1172/JCI115609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans G. S., Potten C. S. The distribution of endocrine cells along the mouse intestine: a quantitative immunocytochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol. 1988;56(3):191–199. doi: 10.1007/BF02890017. [DOI] [PubMed] [Google Scholar]
  10. Foltzer-Jourdainne C., Kedinger M., Raul F. Perinatal expression of brush-border hydrolases in rat colon: hormonal and tissue regulations. Am J Physiol. 1989 Oct;257(4 Pt 1):G496–G503. doi: 10.1152/ajpgi.1989.257.4.G496. [DOI] [PubMed] [Google Scholar]
  11. Freund J. N., Boukamel R., Benazzouz A. Gradient expression of Cdx along the rat intestine throughout postnatal development. FEBS Lett. 1992 Dec 14;314(2):163–166. doi: 10.1016/0014-5793(92)80965-j. [DOI] [PubMed] [Google Scholar]
  12. Freund J. N., Duluc I., Foltzer-Jourdainne C., Gosse F., Raul F. Specific expression of lactase in the jejunum and colon during postnatal development and hormone treatments in the rat. Biochem J. 1990 May 15;268(1):99–103. doi: 10.1042/bj2680099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Freund J. N., Duluc I., Raul F. Discrepancy between the intestinal lactase enzymatic activity and mRNA accumulation in sucklings and adults. Effect of starvation and thyroxine treatment. FEBS Lett. 1989 May 8;248(1-2):39–42. doi: 10.1016/0014-5793(89)80427-2. [DOI] [PubMed] [Google Scholar]
  14. Freund J. N., Duluc I., Raul F. Lactase expression is controlled differently in the jejunum and ileum during development in rats. Gastroenterology. 1991 Feb;100(2):388–394. doi: 10.1016/0016-5085(91)90207-2. [DOI] [PubMed] [Google Scholar]
  15. Freund J. N., Torp N., Duluc I., Foltzer-Jourdainne C., Danielsen M., Raul F. Comparative expression of the mRNA for three intestinal hydrolases during postnatal development in the rat. Cell Mol Biol. 1990;36(6):729–736. [PubMed] [Google Scholar]
  16. Gordon J. I. Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J Cell Biol. 1989 Apr;108(4):1187–1194. doi: 10.1083/jcb.108.4.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Griffiths D. F., Davies S. J., Williams D., Williams G. T., Williams E. D. Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature. 1988 Jun 2;333(6172):461–463. doi: 10.1038/333461a0. [DOI] [PubMed] [Google Scholar]
  18. Hudson D. A., Smith M. W. Colchicine selectively inhibits lactase expression by rat enterocytes. Biochem Pharmacol. 1986 Nov 15;35(22):3929–3934. doi: 10.1016/0006-2952(86)90006-7. [DOI] [PubMed] [Google Scholar]
  19. James R., Kazenwadel J. Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem. 1991 Feb 15;266(5):3246–3251. [PubMed] [Google Scholar]
  20. Keller P., Zwicker E., Mantei N., Semenza G. The levels of lactase and of sucrase-isomaltase along the rabbit small intestine are regulated both at the mRNA level and post-translationally. FEBS Lett. 1992 Nov 30;313(3):265–269. doi: 10.1016/0014-5793(92)81206-2. [DOI] [PubMed] [Google Scholar]
  21. Lloyd M., Mevissen G., Fischer M., Olsen W., Goodspeed D., Genini M., Boll W., Semenza G., Mantei N. Regulation of intestinal lactase in adult hypolactasia. J Clin Invest. 1992 Feb;89(2):524–529. doi: 10.1172/JCI115616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lorenzsonn V., Lloyd M., Olsen W. A. Immunocytochemical heterogeneity of lactase-phlorizin hydrolase in adult lactase deficiency. Gastroenterology. 1993 Jul;105(1):51–59. doi: 10.1016/0016-5085(93)90009-2. [DOI] [PubMed] [Google Scholar]
  23. Maiuri L., Raia V., Potter J., Swallow D., Ho M. W., Fiocca R., Finzi G., Cornaggia M., Capella C., Quaroni A. Mosaic pattern of lactase expression by villous enterocytes in human adult-type hypolactasia. Gastroenterology. 1991 Feb;100(2):359–369. doi: 10.1016/0016-5085(91)90203-w. [DOI] [PubMed] [Google Scholar]
  24. Maiuri L., Rossi M., Raia V., D'Auria S., Swallow D., Quaroni A., Auricchio S. Patchy expression of lactase protein in adult rabbit and rat intestine. Gastroenterology. 1992 Dec;103(6):1739–1746. doi: 10.1016/0016-5085(92)91429-8. [DOI] [PubMed] [Google Scholar]
  25. Newcomer A. D., McGill D. B. Distribution of disaccharidase activity in the small bowel of normal and lactase-deficient subjects. Gastroenterology. 1966 Oct;51(4):481–488. [PubMed] [Google Scholar]
  26. Norén O., Dabelsteen E., Høyer P. E., Olsen J., Sjöström H., Hansen G. H. Onset of transcription of the aminopeptidase N (leukemia antigen CD 13) gene at the crypt/villus transition zone during rabbit enterocyte differentiation. FEBS Lett. 1989 Dec 18;259(1):107–112. doi: 10.1016/0014-5793(89)81506-6. [DOI] [PubMed] [Google Scholar]
  27. Nsi-Emvo E., Launay J. F., Raul F. Improved purification of rat intestinal lactase. Gen Physiol Biophys. 1986 Feb;5(1):53–59. [PubMed] [Google Scholar]
  28. Nsi-Emvo E., Launay J. F., Raul F. Is adult-type hypolactasia in the intestine of mammals related to changes in the intracellular processing of lactase? Cell Mol Biol. 1987;33(3):335–344. [PubMed] [Google Scholar]
  29. Ponder B. A., Schmidt G. H., Wilkinson M. M., Wood M. J., Monk M., Reid A. Derivation of mouse intestinal crypts from single progenitor cells. Nature. 1985 Feb 21;313(6004):689–691. doi: 10.1038/313689a0. [DOI] [PubMed] [Google Scholar]
  30. Ponte P., Gunning P., Blau H., Kedes L. Human actin genes are single copy for alpha-skeletal and alpha-cardiac actin but multicopy for beta- and gamma-cytoskeletal genes: 3' untranslated regions are isotype specific but are conserved in evolution. Mol Cell Biol. 1983 Oct;3(10):1783–1791. doi: 10.1128/mcb.3.10.1783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Quan R., Santiago N. A., Tsuboi K. K., Gray G. M. Intestinal lactase. Shift in intracellular processing to altered, inactive species in the adult rat. J Biol Chem. 1990 Sep 15;265(26):15882–15888. [PubMed] [Google Scholar]
  32. Quaroni A., Isselbacher K. J. Study of intestinal cell differentiation with monoclonal antibodies to intestinal cell surface components. Dev Biol. 1985 Oct;111(2):267–279. doi: 10.1016/0012-1606(85)90482-8. [DOI] [PubMed] [Google Scholar]
  33. Rings E. H., Büller H. A., de Boer P. A., Grand R. J., Montgomery R. K., Lamers W. H., Charles R., Moorman A. F. Messenger RNA sorting in enterocytes. Co-localization with encoded proteins. FEBS Lett. 1992 Mar 30;300(2):183–187. doi: 10.1016/0014-5793(92)80192-j. [DOI] [PubMed] [Google Scholar]
  34. Rings E. H., de Boer P. A., Moorman A. F., van Beers E. H., Dekker J., Montgomery R. K., Grand R. J., Büller H. A. Lactase gene expression during early development of rat small intestine. Gastroenterology. 1992 Oct;103(4):1154–1161. doi: 10.1016/0016-5085(92)91498-s. [DOI] [PubMed] [Google Scholar]
  35. Rubin D. C., Swietlicki E., Roth K. A., Gordon J. I. Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis. J Biol Chem. 1992 Jul 25;267(21):15122–15133. [PubMed] [Google Scholar]
  36. Schibler U., Hagenbüchle O., Wellauer P. K., Pittet A. C. Two promoters of different strengths control the transcription of the mouse alpha-amylase gene Amy-1a in the parotid gland and the liver. Cell. 1983 Jun;33(2):501–508. doi: 10.1016/0092-8674(83)90431-2. [DOI] [PubMed] [Google Scholar]
  37. Schmidt G. H., Wilkinson M. M., Ponder B. A. Cell migration pathway in the intestinal epithelium: an in situ marker system using mouse aggregation chimeras. Cell. 1985 Feb;40(2):425–429. doi: 10.1016/0092-8674(85)90156-4. [DOI] [PubMed] [Google Scholar]
  38. Schmidt G. H., Winton D. J., Ponder B. A. Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine. Development. 1988 Aug;103(4):785–790. doi: 10.1242/dev.103.4.785. [DOI] [PubMed] [Google Scholar]
  39. Sebastio G., Villa M., Sartorio R., Guzzetta V., Poggi V., Auricchio S., Boll W., Mantei N., Semenza G. Control of lactase in human adult-type hypolactasia and in weaning rabbits and rats. Am J Hum Genet. 1989 Oct;45(4):489–497. [PMC free article] [PubMed] [Google Scholar]
  40. Shapiro D. J., Blume J. E., Nielsen D. A. Regulation of messenger RNA stability in eukaryotic cells. Bioessays. 1987 May;6(5):221–226. doi: 10.1002/bies.950060507. [DOI] [PubMed] [Google Scholar]
  41. Spencer C. A., Groudine M. Transcription elongation and eukaryotic gene regulation. Oncogene. 1990 Jun;5(6):777–785. [PubMed] [Google Scholar]
  42. Sterchi E. E., Mills P. R., Fransen J. A., Hauri H. P., Lentze M. J., Naim H. Y., Ginsel L., Bond J. Biogenesis of intestinal lactase-phlorizin hydrolase in adults with lactose intolerance. Evidence for reduced biosynthesis and slowed-down maturation in enterocytes. J Clin Invest. 1990 Oct;86(4):1329–1337. doi: 10.1172/JCI114842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Talbot I. C., Primrose L., Pringle J. H. Functional activity of intestinal epithelium demonstrated by mRNA in situ hybridization. J Pathol. 1989 Aug;158(4):287–291. doi: 10.1002/path.1711580404. [DOI] [PubMed] [Google Scholar]
  44. Traber P. G. Regulation of sucrase-isomaltase gene expression along the crypt-villus axis of rat small intestine. Biochem Biophys Res Commun. 1990 Dec 31;173(3):765–773. doi: 10.1016/s0006-291x(05)80853-8. [DOI] [PubMed] [Google Scholar]
  45. Troelsen J. T., Olsen J., Norén O., Sjöström H. A novel intestinal trans-factor (NF-LPH1) interacts with the lactase-phlorizin hydrolase promoter and co-varies with the enzymatic activity. J Biol Chem. 1992 Oct 5;267(28):20407–20411. [PubMed] [Google Scholar]
  46. Tsuboi K. K., Kwong L. K., D'Harlingue A. E., Stevenson D. K., Kerner J. A., Jr, Sunshine P. The nature of maturational decline of intestinal lactase activity. Biochim Biophys Acta. 1985 May 29;840(1):69–78. doi: 10.1016/0304-4165(85)90163-1. [DOI] [PubMed] [Google Scholar]
  47. Tsuboi K. K., Kwong L. K., Sunshine P., Castillo R. O. Mechanism of maturational decline of rat intestinal lactase-phlorizin hydrolase. Biochem J. 1992 Feb 15;282(Pt 1):107–113. doi: 10.1042/bj2820107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wicker C., Puigserver A. Expression of rat pancreatic lipase gene is modulated by a lipid-rich diet at a transcriptional level. Biochem Biophys Res Commun. 1990 Jan 15;166(1):358–364. doi: 10.1016/0006-291x(90)91953-p. [DOI] [PubMed] [Google Scholar]
  49. Witte J., Lloyd M., Lorenzsonn V., Korsmo H., Olsen W. The biosynthetic basis of adult lactase deficiency. J Clin Invest. 1990 Oct;86(4):1338–1342. doi: 10.1172/JCI114843. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES