Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Sep 2;126(6):1573–1583. doi: 10.1083/jcb.126.6.1573

Overexpressing sperm surface beta 1,4-galactosyltransferase in transgenic mice affects multiple aspects of sperm-egg interactions

PMCID: PMC2290943  PMID: 8089187

Abstract

Sperm surface beta 1,4-galactosyltransferase (GalTase) mediates fertilization in mice by binding to specific O-linked oligosaccharide ligands on the egg coat glycoprotein ZP3. Before binding the egg, sperm GalTase is masked by epididymally derived glycosides that are shed from the sperm surface during capacitation. After binding the egg, sperm- bound oligosaccharides on ZP3 induce the acrosome reaction by receptor aggregation, presumably involving GalTase. In this study, we asked how increasing the levels of sperm surface GalTase would affect sperm-egg interactions using transgenic mice that overexpress GalTase under the control of a heterologous promoter. GalTase expression was elevated in many tissues in adult transgenic animals, including testis. Sperm from transgenic males had approximately six times the wild-type level of surface GalTase protein, which was localized appropriately on the sperm head as revealed by indirect immunofluorescence. As expected, sperm from transgenic mice bound more radiolabeled ZP3 than did wild-type sperm. However, sperm from transgenic animals were relatively unable to bind eggs, as compared to sperm from wild-type animals. The mechanistic basis for the reduced egg-binding ability of transgenic sperm was attributed to alterations in two GalTase-dependent events. First, transgenic sperm that overexpress surface GalTase bound more epididymal glycoside substrates than did sperm from wild-type mice, thus masking GalTase and preventing it from interacting with its zona pellucida ligand. Second, those sperm from transgenic mice that were able to bind the zona pellucida were hypersensitive to ZP3, such that they underwent precocious acrosome reactions and bound to eggs more tenuously than did wild-type sperm. These results demonstrate that sperm-egg binding requires an optimal, rather than maximal, level of surface GalTase expression, since increasing this level decreases sperm reproductive efficiency both before and after egg binding. Although sperm GalTase is required for fertilization by serving as a receptor for the egg zona pellucida, excess surface GalTase is counterproductive to successful sperm-egg binding.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bleil J. D., Wassarman P. M. Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm. J Cell Biol. 1986 Apr;102(4):1363–1371. doi: 10.1083/jcb.102.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bleil J. D., Wassarman P. M. Identification of a ZP3-binding protein on acrosome-intact mouse sperm by photoaffinity crosslinking. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5563–5567. doi: 10.1073/pnas.87.14.5563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Braun R. E., Behringer R. R., Peschon J. J., Brinster R. L., Palmiter R. D. Genetically haploid spermatids are phenotypically diploid. Nature. 1989 Jan 26;337(6205):373–376. doi: 10.1038/337373a0. [DOI] [PubMed] [Google Scholar]
  5. Brinster R. L., Allen J. M., Behringer R. R., Gelinas R. E., Palmiter R. D. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci U S A. 1988 Feb;85(3):836–840. doi: 10.1073/pnas.85.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cheng A., Le T., Palacios M., Bookbinder L. H., Wassarman P. M., Suzuki F., Bleil J. D. Sperm-egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J Cell Biol. 1994 May;125(4):867–878. doi: 10.1083/jcb.125.4.867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  8. De S. K., Enders G. C., Andrews G. K. High levels of metallothionein messenger RNAs in male germ cells of the adult mouse. Mol Endocrinol. 1991 May;5(5):628–636. doi: 10.1210/mend-5-5-628. [DOI] [PubMed] [Google Scholar]
  9. Derman E. Isolation of a cDNA clone for mouse urinary proteins: age- and sex-related expression of mouse urinary protein genes is transcriptionally controlled. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5425–5429. doi: 10.1073/pnas.78.9.5425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Endo Y., Lee M. A., Kopf G. S. Characterization of an islet-activating protein-sensitive site in mouse sperm that is involved in the zona pellucida-induced acrosome reaction. Dev Biol. 1988 Sep;129(1):12–24. doi: 10.1016/0012-1606(88)90157-1. [DOI] [PubMed] [Google Scholar]
  11. Evans S. C., Lopez L. C., Shur B. D. Dominant negative mutation in cell surface beta 1,4-galactosyltransferase inhibits cell-cell and cell-matrix interactions. J Cell Biol. 1993 Feb;120(4):1045–1057. doi: 10.1083/jcb.120.4.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Florman H. M., Bechtol K. B., Wassarman P. M. Enzymatic dissection of the functions of the mouse egg's receptor for sperm. Dev Biol. 1984 Nov;106(1):243–255. doi: 10.1016/0012-1606(84)90079-4. [DOI] [PubMed] [Google Scholar]
  13. Florman H. M., Wassarman P. M. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. Cell. 1985 May;41(1):313–324. doi: 10.1016/0092-8674(85)90084-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hathaway H. J., Shur B. D. Cell surface beta 1,4-galactosyltransferase functions during neural crest cell migration and neurulation in vivo. J Cell Biol. 1992 Apr;117(2):369–382. doi: 10.1083/jcb.117.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kalab P., Visconti P., Leclerc P., Kopf G. S. p95, the major phosphotyrosine-containing protein in mouse spermatozoa, is a hexokinase with unique properties. J Biol Chem. 1994 Feb 4;269(5):3810–3817. [PubMed] [Google Scholar]
  16. Leyton L., Saling P. Evidence that aggregation of mouse sperm receptors by ZP3 triggers the acrosome reaction. J Cell Biol. 1989 Jun;108(6):2163–2168. doi: 10.1083/jcb.108.6.2163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lopez L. C., Bayna E. M., Litoff D., Shaper N. L., Shaper J. H., Shur B. D. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J Cell Biol. 1985 Oct;101(4):1501–1510. doi: 10.1083/jcb.101.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lopez L. C., Shur B. D. Redistribution of mouse sperm surface galactosyltransferase after the acrosome reaction. J Cell Biol. 1987 Oct;105(4):1663–1670. doi: 10.1083/jcb.105.4.1663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lopez L. C., Youakim A., Evans S. C., Shur B. D. Evidence for a molecular distinction between Golgi and cell surface forms of beta 1,4-galactosyltransferase. J Biol Chem. 1991 Aug 25;266(24):15984–15991. [PubMed] [Google Scholar]
  20. Low M. J., Hammer R. E., Goodman R. H., Habener J. F., Palmiter R. D., Brinster R. L. Tissue-specific posttranslational processing of pre-prosomatostatin encoded by a metallothionein-somatostatin fusion gene in transgenic mice. Cell. 1985 May;41(1):211–219. doi: 10.1016/0092-8674(85)90075-3. [DOI] [PubMed] [Google Scholar]
  21. Macek M. B., Lopez L. C., Shur B. D. Aggregation of beta-1,4-galactosyltransferase on mouse sperm induces the acrosome reaction. Dev Biol. 1991 Oct;147(2):440–444. doi: 10.1016/0012-1606(91)90301-i. [DOI] [PubMed] [Google Scholar]
  22. Miller D. J., Ax R. L. Carbohydrates and fertilization in animals. Mol Reprod Dev. 1990 Jun;26(2):184–198. doi: 10.1002/mrd.1080260213. [DOI] [PubMed] [Google Scholar]
  23. Miller D. J., Gong X., Decker G., Shur B. D. Egg cortical granule N-acetylglucosaminidase is required for the mouse zona block to polyspermy. J Cell Biol. 1993 Dec;123(6 Pt 1):1431–1440. doi: 10.1083/jcb.123.6.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller D. J., Gong X., Shur B. D. Sperm require beta-N-acetylglucosaminidase to penetrate through the egg zona pellucida. Development. 1993 Aug;118(4):1279–1289. doi: 10.1242/dev.118.4.1279. [DOI] [PubMed] [Google Scholar]
  25. Miller D. J., Macek M. B., Shur B. D. Complementarity between sperm surface beta-1,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. Nature. 1992 Jun 18;357(6379):589–593. doi: 10.1038/357589a0. [DOI] [PubMed] [Google Scholar]
  26. Neill J. M., Olds-Clarke P. Incubation of mouse sperm with lactate delays capacitation and hyperactivation and lowers fertilization levels in vitro. Gamete Res. 1988 Aug;20(4):459–473. doi: 10.1002/mrd.1120200407. [DOI] [PubMed] [Google Scholar]
  27. Pratt S. A., Shur B. D. Beta-1,4-galactosyltransferase expression during spermatogenesis: stage-specific regulation by t alleles and uniform distribution in + -spermatids and t-spermatids. Dev Biol. 1993 Mar;156(1):80–93. doi: 10.1006/dbio.1993.1060. [DOI] [PubMed] [Google Scholar]
  28. Russo R. N., Shaper N. L., Shaper J. H. Bovine beta 1----4-galactosyltransferase: two sets of mRNA transcripts encode two forms of the protein with different amino-terminal domains. In vitro translation experiments demonstrate that both the short and the long forms of the enzyme are type II membrane-bound glycoproteins. J Biol Chem. 1990 Feb 25;265(6):3324–3331. [PubMed] [Google Scholar]
  29. Shaper N. L., Wright W. W., Shaper J. H. Murine beta 1,4-galactosyltransferase: both the amounts and structure of the mRNA are regulated during spermatogenesis. Proc Natl Acad Sci U S A. 1990 Jan;87(2):791–795. doi: 10.1073/pnas.87.2.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shur B. D., Hall N. G. A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. J Cell Biol. 1982 Nov;95(2 Pt 1):574–579. doi: 10.1083/jcb.95.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shur B. D., Hall N. G. Sperm surface galactosyltransferase activities during in vitro capacitation. J Cell Biol. 1982 Nov;95(2 Pt 1):567–573. doi: 10.1083/jcb.95.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shur B. D., Neely C. A. Plasma membrane association, purification, and partial characterization of mouse sperm beta 1,4-galactosyltransferase. J Biol Chem. 1988 Nov 25;263(33):17706–17714. [PubMed] [Google Scholar]
  33. Ward C. R., Kopf G. S. Molecular events mediating sperm activation. Dev Biol. 1993 Jul;158(1):9–34. doi: 10.1006/dbio.1993.1165. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES