Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1994 Sep 2;126(6):1445–1453. doi: 10.1083/jcb.126.6.1445

Ezrin has a COOH-terminal actin-binding site that is conserved in the ezrin protein family

PMCID: PMC2290954  PMID: 8089177

Abstract

Ezrin, previously also known as cytovillin, p81, and 80K, is a cytoplasmic protein enriched in microvilli and other cell surface structures. Ezrin is postulated to have a membrane-cytoskeleton linker role. Recent findings have also revealed that the NH2-terminal domain of ezrin is associated with the plasma membrane and the COOH-terminal domain with the cytoskeleton (Algrain, M., O. Turunen, A. Vaheri, D. Louvard, and M. Arpin. 1993. J. Cell Biol. 120: 129-139). Using bacterially expressed fragments of ezrin we now demonstrate that ezrin has an actin-binding capability. We used glutathione-S-transferase fusion proteins of truncated ezrin in affinity chromatography to bind actin from the cell extract or purified rabbit muscle actin. We detected a binding site for filamentous actin that was localized to the COOH-terminal 34 amino acids of ezrin. No binding of monomeric actin was detected in the assay. The region corresponding to the COOH- terminal actin-binding site in ezrin is highly conserved in moesin, actin-capping protein radixin and EM10 protein of E. multilocularis, but not in merlin/schwannomin. Consequently, this site is a potential actin-binding site also in the other members of the protein family. Furthermore, the actin-binding site in ezrin shows sequence homology to the actin-binding site in the COOH terminus of the beta subunit of the actin-capping protein CapZ and one of the potential actin-binding sites in myosin heavy chain. The actin-binding capability of ezrin supports its proposed role as a membrane-cytoskeleton linker.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Algrain M., Turunen O., Vaheri A., Louvard D., Arpin M. Ezrin contains cytoskeleton and membrane binding domains accounting for its proposed role as a membrane-cytoskeletal linker. J Cell Biol. 1993 Jan;120(1):129–139. doi: 10.1083/jcb.120.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arakawa H., Hayashi N., Nagase H., Ogawa M., Nakamura Y. Alternative splicing of the NF2 gene and its mutation analysis of breast and colorectal cancers. Hum Mol Genet. 1994 Apr;3(4):565–568. doi: 10.1093/hmg/3.4.565. [DOI] [PubMed] [Google Scholar]
  3. Arpin M., Algrain M., Louvard D. Membrane-actin microfilament connections: an increasing diversity of players related to band 4.1. Curr Opin Cell Biol. 1994 Feb;6(1):136–141. doi: 10.1016/0955-0674(94)90127-9. [DOI] [PubMed] [Google Scholar]
  4. Bennett V. The spectrin-actin junction of erythrocyte membrane skeletons. Biochim Biophys Acta. 1989 Jan 18;988(1):107–121. doi: 10.1016/0304-4157(89)90006-3. [DOI] [PubMed] [Google Scholar]
  5. Berryman M., Franck Z., Bretscher A. Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells. J Cell Sci. 1993 Aug;105(Pt 4):1025–1043. doi: 10.1242/jcs.105.4.1025. [DOI] [PubMed] [Google Scholar]
  6. Bretscher A. Microfilament structure and function in the cortical cytoskeleton. Annu Rev Cell Biol. 1991;7:337–374. doi: 10.1146/annurev.cb.07.110191.002005. [DOI] [PubMed] [Google Scholar]
  7. Bretscher A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol. 1983 Aug;97(2):425–432. doi: 10.1083/jcb.97.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bretscher A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induced in A-431 cells by epidermal growth factor. J Cell Biol. 1989 Mar;108(3):921–930. doi: 10.1083/jcb.108.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Casella J. F., Craig S. W., Maack D. J., Brown A. E. Cap Z(36/32), a barbed end actin-capping protein, is a component of the Z-line of skeletal muscle. J Cell Biol. 1987 Jul;105(1):371–379. doi: 10.1083/jcb.105.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Conboy J., Kan Y. W., Shohet S. B., Mohandas N. Molecular cloning of protein 4.1, a major structural element of the human erythrocyte membrane skeleton. Proc Natl Acad Sci U S A. 1986 Dec;83(24):9512–9516. doi: 10.1073/pnas.83.24.9512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Egerton M., Burgess W. H., Chen D., Druker B. J., Bretscher A., Samelson L. E. Identification of ezrin as an 81-kDa tyrosine-phosphorylated protein in T cells. J Immunol. 1992 Sep 15;149(6):1847–1852. [PubMed] [Google Scholar]
  12. Fazioli F., Wong W. T., Ullrich S. J., Sakaguchi K., Appella E., Di Fiore P. P. The ezrin-like family of tyrosine kinase substrates: receptor-specific pattern of tyrosine phosphorylation and relationship to malignant transformation. Oncogene. 1993 May;8(5):1335–1345. [PubMed] [Google Scholar]
  13. Franck Z., Gary R., Bretscher A. Moesin, like ezrin, colocalizes with actin in the cortical cytoskeleton in cultured cells, but its expression is more variable. J Cell Sci. 1993 May;105(Pt 1):219–231. doi: 10.1242/jcs.105.1.219. [DOI] [PubMed] [Google Scholar]
  14. Frosch P. M., Frosch M., Pfister T., Schaad V., Bitter-Suermann D. Cloning and characterisation of an immunodominant major surface antigen of Echinococcus multilocularis. Mol Biochem Parasitol. 1991 Oct;48(2):121–130. doi: 10.1016/0166-6851(91)90108-i. [DOI] [PubMed] [Google Scholar]
  15. Funayama N., Nagafuchi A., Sato N., Tsukita S., Tsukita S. Radixin is a novel member of the band 4.1 family. J Cell Biol. 1991 Nov;115(4):1039–1048. doi: 10.1083/jcb.115.4.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Furthmayr H., Lankes W., Amieva M. Moesin, a new cytoskeletal protein and constituent of filopodia: its role in cellular functions. Kidney Int. 1992 Mar;41(3):665–670. doi: 10.1038/ki.1992.102. [DOI] [PubMed] [Google Scholar]
  17. Gary R., Bretscher A. Heterotypic and homotypic associations between ezrin and moesin, two putative membrane-cytoskeletal linking proteins. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10846–10850. doi: 10.1073/pnas.90.22.10846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gould K. L., Bretscher A., Esch F. S., Hunter T. cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1. EMBO J. 1989 Dec 20;8(13):4133–4142. doi: 10.1002/j.1460-2075.1989.tb08598.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gould K. L., Cooper J. A., Bretscher A., Hunter T. The protein-tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein. J Cell Biol. 1986 Feb;102(2):660–669. doi: 10.1083/jcb.102.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gu M. X., York J. D., Warshawsky I., Majerus P. W. Identification, cloning, and expression of a cytosolic megakaryocyte protein-tyrosine-phosphatase with sequence homology to cytoskeletal protein 4.1. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5867–5871. doi: 10.1073/pnas.88.13.5867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Haase V. H., Trofatter J. A., MacCollin M., Tarttelin E., Gusella J. F., Ramesh V. The murine NF2 homologue encodes a highly conserved merlin protein with alternative forms. Hum Mol Genet. 1994 Mar;3(3):407–411. doi: 10.1093/hmg/3.3.407. [DOI] [PubMed] [Google Scholar]
  22. Hanzel D. K., Urushidani T., Usinger W. R., Smolka A., Forte J. G. Immunological localization of an 80-kDa phosphoprotein to the apical membrane of gastric parietal cells. Am J Physiol. 1989 Jun;256(6 Pt 1):G1082–G1089. doi: 10.1152/ajpgi.1989.256.6.G1082. [DOI] [PubMed] [Google Scholar]
  23. Hanzel D., Reggio H., Bretscher A., Forte J. G., Mangeat P. The secretion-stimulated 80K phosphoprotein of parietal cells is ezrin, and has properties of a membrane cytoskeletal linker in the induced apical microvilli. EMBO J. 1991 Sep;10(9):2363–2373. doi: 10.1002/j.1460-2075.1991.tb07775.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hara T., Bianchi A. B., Seizinger B. R., Kley N. Molecular cloning and characterization of alternatively spliced transcripts of the mouse neurofibromatosis 2 gene. Cancer Res. 1994 Jan 15;54(2):330–335. [PubMed] [Google Scholar]
  25. Hitchcock-DeGregori S. E., Varnell T. A. Tropomyosin has discrete actin-binding sites with sevenfold and fourteenfold periodicities. J Mol Biol. 1990 Aug 20;214(4):885–896. doi: 10.1016/0022-2836(90)90343-K. [DOI] [PubMed] [Google Scholar]
  26. Hug C., Miller T. M., Torres M. A., Casella J. F., Cooper J. A. Identification and characterization of an actin-binding site of CapZ. J Cell Biol. 1992 Feb;116(4):923–931. doi: 10.1083/jcb.116.4.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kabsch W., Vandekerckhove J. Structure and function of actin. Annu Rev Biophys Biomol Struct. 1992;21:49–76. doi: 10.1146/annurev.bb.21.060192.000405. [DOI] [PubMed] [Google Scholar]
  28. Keane A. M., Trayer I. P., Levine B. A., Zeugner C., Ruegg J. C. Peptide mimetics of an actin-binding site on myosin span two functional domains on actin. Nature. 1990 Mar 15;344(6263):265–268. doi: 10.1038/344265a0. [DOI] [PubMed] [Google Scholar]
  29. Krieg J., Hunter T. Identification of the two major epidermal growth factor-induced tyrosine phosphorylation sites in the microvillar core protein ezrin. J Biol Chem. 1992 Sep 25;267(27):19258–19265. [PubMed] [Google Scholar]
  30. Lankes W. T., Furthmayr H. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8297–8301. doi: 10.1073/pnas.88.19.8297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lankes W. T., Schwartz-Albiez R., Furthmayr H. Cloning and sequencing of porcine moesin and radixin cDNA and identification of highly conserved domains. Biochim Biophys Acta. 1993 Dec 14;1216(3):479–482. doi: 10.1016/0167-4781(93)90018-9. [DOI] [PubMed] [Google Scholar]
  32. Louvard D. The function of the major cytoskeletal components of the brush border. Curr Opin Cell Biol. 1989 Feb;1(1):51–57. doi: 10.1016/s0955-0674(89)80036-5. [DOI] [PubMed] [Google Scholar]
  33. Luna E. J., Hitt A. L. Cytoskeleton--plasma membrane interactions. Science. 1992 Nov 6;258(5084):955–964. doi: 10.1126/science.1439807. [DOI] [PubMed] [Google Scholar]
  34. McLachlan A. D., Stewart M. The 14-fold periodicity in alpha-tropomyosin and the interaction with actin. J Mol Biol. 1976 May 15;103(2):271–298. doi: 10.1016/0022-2836(76)90313-2. [DOI] [PubMed] [Google Scholar]
  35. Pakkanen R., Hedman K., Turunen O., Wahlström T., Vaheri A. Microvillus-specific Mr 75,000 plasma membrane protein of human choriocarcinoma cells. J Histochem Cytochem. 1987 Aug;35(8):809–816. doi: 10.1177/35.8.3298422. [DOI] [PubMed] [Google Scholar]
  36. Pakkanen R. Immunofluorescent and immunochemical evidence for the expression of cytovillin in the microvilli of a wide range of cultured human cells. J Cell Biochem. 1988 Sep;38(1):65–75. doi: 10.1002/jcb.240380107. [DOI] [PubMed] [Google Scholar]
  37. Pakkanen R., Vaheri A. Cytovillin and other microvillar proteins of human choriocarcinoma cells. J Cell Biochem. 1989 Sep;41(1):1–12. doi: 10.1002/jcb.240410102. [DOI] [PubMed] [Google Scholar]
  38. Pakkanen R., von Bonsdorff C. H., Turunen O., Wahlström T., Vaheri A. Redistribution of Mr 75,000 plasma membrane protein, cytovillin, into newly formed microvilli in herpes simplex and Semliki Forest virus infected human embryonal fibroblasts. Eur J Cell Biol. 1988 Aug;46(3):435–443. [PubMed] [Google Scholar]
  39. Parry D. A. Analysis of the primary sequence of alpha-tropomyosin from rabbit skeletal muscle. J Mol Biol. 1975 Nov 5;98(3):519–535. doi: 10.1016/s0022-2836(75)80084-2. [DOI] [PubMed] [Google Scholar]
  40. Pykett M. J., Murphy M., Harnish P. R., George D. L. The neurofibromatosis 2 (NF2) tumor suppressor gene encodes multiple alternatively spliced transcripts. Hum Mol Genet. 1994 Apr;3(4):559–564. doi: 10.1093/hmg/3.4.559. [DOI] [PubMed] [Google Scholar]
  41. Rayment I., Holden H. M., Whittaker M., Yohn C. B., Lorenz M., Holmes K. C., Milligan R. A. Structure of the actin-myosin complex and its implications for muscle contraction. Science. 1993 Jul 2;261(5117):58–65. doi: 10.1126/science.8316858. [DOI] [PubMed] [Google Scholar]
  42. Rees D. J., Ades S. E., Singer S. J., Hynes R. O. Sequence and domain structure of talin. Nature. 1990 Oct 18;347(6294):685–689. doi: 10.1038/347685a0. [DOI] [PubMed] [Google Scholar]
  43. Rouleau G. A., Merel P., Lutchman M., Sanson M., Zucman J., Marineau C., Hoang-Xuan K., Demczuk S., Desmaze C., Plougastel B. Alteration in a new gene encoding a putative membrane-organizing protein causes neuro-fibromatosis type 2. Nature. 1993 Jun 10;363(6429):515–521. doi: 10.1038/363515a0. [DOI] [PubMed] [Google Scholar]
  44. Sato N., Funayama N., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. A gene family consisting of ezrin, radixin and moesin. Its specific localization at actin filament/plasma membrane association sites. J Cell Sci. 1992 Sep;103(Pt 1):131–143. doi: 10.1242/jcs.103.1.131. [DOI] [PubMed] [Google Scholar]
  45. Sato N., Yonemura S., Obinata T., Tsukita S., Tsukita S. Radixin, a barbed end-capping actin-modulating protein, is concentrated at the cleavage furrow during cytokinesis. J Cell Biol. 1991 Apr;113(2):321–330. doi: 10.1083/jcb.113.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schröder R. R., Manstein D. J., Jahn W., Holden H., Rayment I., Holmes K. C., Spudich J. A. Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1. Nature. 1993 Jul 8;364(6433):171–174. doi: 10.1038/364171a0. [DOI] [PubMed] [Google Scholar]
  47. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  48. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  49. Trofatter J. A., MacCollin M. M., Rutter J. L., Murrell J. R., Duyao M. P., Parry D. M., Eldridge R., Kley N., Menon A. G., Pulaski K. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993 Mar 12;72(5):791–800. doi: 10.1016/0092-8674(93)90406-g. [DOI] [PubMed] [Google Scholar]
  50. Tsukita S., Hieda Y., Tsukita S. A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J Cell Biol. 1989 Jun;108(6):2369–2382. doi: 10.1083/jcb.108.6.2369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Turunen O., Winqvist R., Pakkanen R., Grzeschik K. H., Wahlström T., Vaheri A. Cytovillin, a microvillar Mr 75,000 protein. cDNA sequence, prokaryotic expression, and chromosomal localization. J Biol Chem. 1989 Oct 5;264(28):16727–16732. [PubMed] [Google Scholar]
  52. Ullrich S. J., Robinson E. A., Appella E. Characterization of a chemically homogeneous tumor antigen from a methylcholanthrene-induced sarcoma, Meth A. Mol Immunol. 1986 May;23(5):545–555. doi: 10.1016/0161-5890(86)90118-5. [DOI] [PubMed] [Google Scholar]
  53. Vandekerckhove J., Vancompernolle K. Structural relationships of actin-binding proteins. Curr Opin Cell Biol. 1992 Feb;4(1):36–42. doi: 10.1016/0955-0674(92)90056-i. [DOI] [PubMed] [Google Scholar]
  54. Weeds A., Maciver S. F-actin capping proteins. Curr Opin Cell Biol. 1993 Feb;5(1):63–69. doi: 10.1016/s0955-0674(05)80009-2. [DOI] [PubMed] [Google Scholar]
  55. Yang Q., Tonks N. K. Isolation of a cDNA clone encoding a human protein-tyrosine phosphatase with homology to the cytoskeletal-associated proteins band 4.1, ezrin, and talin. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):5949–5953. doi: 10.1073/pnas.88.14.5949. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES